
Stackspin
Release 1.0.0

Greenhost

Sep 29, 2022

INSTALLATION

1 Installation overview 3
1.1 Preparing the provisioning machine . 3
1.2 Create a python virtual environment (Optional) . 4
1.3 Install the requirements . 4
1.4 Stackspin CLI client usage . 4

2 Create and configure a kubernetes cluster 5

3 Install Stackspin 11
3.1 Step 1: Flux configuration . 11
3.2 Step 2: Install core applications . 12
3.3 Step 3: Install additional applications . 13
3.4 Step 4: Validate setup . 13
3.5 Step 5: Let us know! . 13

4 Test your installation 15
4.1 Stackspin installation . 15
4.2 Command line tests . 15
4.3 Testing Instructions for all apps . 15
4.4 Testing Instructions for specific apps . 15
4.5 Providing feedback . 17

5 Manage Stackspin 19
5.1 Logging in . 19
5.2 Login and logout limitations . 19
5.3 Dashboard . 20
5.4 Users . 20

6 Applications 23
6.1 Dashboard . 23
6.2 Grafana . 23
6.3 Nextcloud . 23
6.4 Onlyoffice . 24
6.5 Zulip . 24
6.6 Wekan . 25
6.7 WordPress . 25

7 Migrating application data 27
7.1 Nextcloud . 27
7.2 Wekan . 28
7.3 WordPress . 29

i

7.4 Zulip . 30

8 Logging 33
8.1 Central log aggregation . 33

9 Monitoring 37
9.1 Grafana . 37
9.2 Prometheus . 37
9.3 Alertmanager . 38
9.4 Email alerts . 38

10 Maintenance 39
10.1 Backup . 39
10.2 Restore . 39
10.3 Change the IP of your cluster . 41
10.4 Delete evicted pods . 41
10.5 Apply changes to flux variables . 41
10.6 Run Nextcloud occ commands . 41

11 Upgrade guide 43
11.1 From 0.8 to 1.0 . 43
11.2 Upgrading to 0.8 . 44
11.3 Upgrading to 0.7.0 . 46
11.4 Upgrading to 0.6.0 . 49
11.5 Upgrading from 0.4.0 to 0.5.0 . 49
11.6 Upgrading from 0.3.0 to 0.4.0 . 49
11.7 Upgrading to 0.3.0 . 50

12 Customizing 53
12.1 Prerequisites . 53
12.2 Customize Stackspin applications . 53
12.3 Custom flux repository . 54

13 Troubleshooting 55
13.1 Known issues . 55
13.2 SSH access . 55
13.3 Using kubectl to debug your cluster . 55
13.4 HTTPS certificates . 57
13.5 Purge Stackspin and install from scratch . 60

14 Testing 61
14.1 Testinfra tests . 61
14.2 End to end tests . 63

15 Security 65
15.1 Access control . 65

16 Contributing 67
16.1 Code of conduct . 67
16.2 Preparing the development environment . 67
16.3 Adding dependencies . 68
16.4 CI pipeline image . 68

17 Stackspin Design 71
17.1 Application build pipeline . 71
17.2 Configuration . 73

ii

17.3 Application containers . 74
17.4 Persistent data . 74
17.5 Automatic updates . 74
17.6 APIs . 75

18 Reference documentation 77
18.1 File structure . 77

19 Comparable projects 79
19.1 What makes Stackspin unique . 79
19.2 Platforms . 79

20 Single sign-on Architecture 81
20.1 Overview . 81
20.2 Flows . 81
20.3 Configuring OIDC clients . 82

iii

iv

Stackspin, Release 1.0.0

Stackspin is a platform that offers self-managed, click-and-play provisioning of online applications for Civil Society
Organisations (CSOs). Users will be able to easily set up a self-hosted instance of Stackspin, so they can keep control
over the data that gets entered into these applications.

Stackspin is:

• Open Source

• Self updating

• Easy to deploy

• Integrated

For more information, go to the Stackspin website.

INSTALLATION 1

https://stackspin.net

Stackspin, Release 1.0.0

2 INSTALLATION

CHAPTER

ONE

INSTALLATION OVERVIEW

Warning: When you install Stackspin on a server, the installation process will make substantial changes to the
server’s configuration, so please do not use a server that performs any other functions that should not be disrupted.

This page will guide you through the installation of the “Stackspin CLI”. The CLI can be used to set up Stackspin on
a different machine that is connected to the internet. It also functions as a starting point for running tests.

1.1 Preparing the provisioning machine

You should have a trusted machine to run the installer on, this can be your laptop or pc. In this guide, we call it the
provisioning machine. All commands in these installation instructions need to be run the provisioning machine, except
when a command starts with cluster$

The following software setup is required on your provisioning machine:

• You need Python 3 with its development files, Pip and Git installed. On Debian/Ubuntu: apt install
python3-pip python3-dev git

• We recommend using a python virtualenv to make sure Stackspin does not change any of your other python
projects. Install virtualenv by running pip3 install --user venv or apt install python3-venv.

• You need a recent version of Pip. If you run into problems during pip install you might need to run pip
install --upgrade pip.

• kubectl (installation instructions)

• flux version 0.33.0 (Download flux_0.33.0_linux_amd64.tar.gz or use the official installation script: curl -s
https://fluxcd.io/install.sh | sudo FLUX_VERSION=0.33.0 bash)

Then you can clone the Stackspin git repository and checkout the latest release branch (currently v1.0):

$ git clone -b v1.0 https://open.greenhost.net/stackspin/stackspin.git
$ cd stackspin

Apart from the previously installed software, Stackspin will only modify in the clusters subdirectory of the repository.
So multiple provisioning machines can administer the same instance so long as that subdirectory is synced between
them.

3

https://docs.python.org/3/tutorial/venv.html
https://kubernetes.io/docs/tasks/tools/#kubectl
https://github.com/fluxcd/flux2/releases/download/v0.33.0/flux_0.33.0_linux_amd64.tar.gz

Stackspin, Release 1.0.0

1.2 Create a python virtual environment (Optional)

Create a python virtual environment called “env” that uses python 3. This makes sure we do not change any of your
other python projects. The second command “activates” the virtualenv.

Note: Activating the virtualenv means you will use that environment to install and run python programs instead of
your global environment. If you close your terminal or open a new one, you need to activate the virtualenv again.

$ python3 -m venv env
$. env/bin/activate

1.3 Install the requirements

Next, install the Stackspin CLI client by running the following commands:

$ pip3 install -r requirements.txt

1.4 Stackspin CLI client usage

Now you can run the Stackspin CLI as follows:

$ python -m stackspin CLUSTER_NAME <command>

The CLI always needs a CLUSTER_NAME argument. Even for getting subcommand help messages. Be sure to run this
command in the root directory of the git repository. In this tutorial, we’re using stackspin.example.org as the
cluster name. Try it out by running:

$ python -m stackspin stackspin.example.org --help

The next chapter, Create and configure a kubernetes cluster will explain setting up and/or configuring a Kubernetes
cluster to install Stackspin on.

4 Chapter 1. Installation overview

CHAPTER

TWO

CREATE AND CONFIGURE A KUBERNETES CLUSTER

Below, choose whether you want to install Stackspin on a VPS or an existing Kubernetes cluster. We recommend
manually installing it on a VPS, this is the most tested solution.

A. Install on a VPS

We recommend manually installing Stackspin on a Greenhost VPS as explained below. However, if you plan on in-
stalling many Stackspin instances, click the tab “ADVANCED: Use the Greenhost API” to learn how to automatically
create VPSs and DNS records and install Stackspin on them.

This document describes how you can use Stackspin’s CLI to install k3s, a lightweight Kubernetes distribution, on a
virtual private server.

For Stackspin we will set up a “single-node” kubernetes cluster. This means everything runs on the same VPS. Support
for “multi-node” clusters (a Kubernetes cluster on more than one VPS) will come in the future.

Manually install on a VPS

Prerequisites

These instructions assume you have a VPS or other kind of server ready that meets the following requirements:

• Debian 11 (bullseye) installed

• A public IPv4 address (Dual-Stack/IPv6 only is not yet supported)

• The ability to create DNS records for this IP

• The VPS meets the system requirements below

• At least 25GB of disk space for installation, plus more for application data. We recommend starting with at least
30GB.

• Root ssh access

System requirements

The system requirements depend on which applications you want to install into Stackspin. The following table shows
the minimum requirements for each application (1000m CPU means 1 core). Sum up the requirements of all the
applications you wish to install, together with the “Core components”. That is the amount of memory and CPU you
need to successfully run Stackspin. If you try to run Stackspin on machines with less than the recommended system
requirements, you will notice that some “Pods” (application components) refuse to start.

5

https://k3s.io/
https://open.greenhost.net/stackspin/stackspin/-/issues/1180

Stackspin, Release 1.0.0

Table 1: Stackspin application resource requirements
Application Memory CPU cores
Core components 5.0 GiB 1000m
Zulip 2.9 GiB 215m
WordPress 770 MiB 100m
Wekan 620 MiB 50m
Velero 625 MiB 20m
Nextcloud 2.4 GiB 360m
Monitoring 2.3 GiB 180m

This guide assumes the VPS’s IP address is 1.2.3.4 and we install on the domain stackspin.example.org. Sub-
stitute these two variables with your IP address and the (sub)domain you want Stackpin to be available on.

Step 1: Create cluster configuration

To create a config for your cluster, use the create subcommand of the Stackspin CLI. First, choose a name (we chose
stackspin.example.org) for your cluster. Then run the following command to get information about the create
subcommand:

$ python -m stackspin stackspin.example.org create --help

Create the initial Stackspin configuration for your VPS by running the following command:

$ python -m stackspin stackspin.example.org create \
stackspin.example.org \
--ip-address 1.2.3.4

This configures your cluster under the fully qualified domain name (FQDN) stackspin.example.org. To break
down the command:

• the first, positional argument stackspin.example.org tells the cluster the domain it will be hosted on. This
should be a (subdomain of a) domain you own.

• --ip-address 1.2.3.4 tells the script the IP address of your VPS. This will be used to find the VPS during
the installation procedure.

The configuration has now been written to the clusters/stackspin.example.org on your provisioning machine.

ADVANCED: Use the Greenhost API

Prerequisites

Before you can start, you need the following things:

1. An API key with Customer rights.

Make sure the Stackspin CLI can use your token by storing it in a COSMOS_API_TOKEN variable.

$ export COSMOS_API_TOKEN=<paste your API key here>

In the same terminal, you can now use the create subcommand

2. An SSH key ID from the Cosmos Service Centre’s “VPS Cloud” section. This SSH key will get Root access on
the VPS.

• You can find your SSH key ID by going to VPS Cloud -> SSH keys and checking the link under “Show
key”. The numerical part is your SSH key ID.

6 Chapter 2. Create and configure a kubernetes cluster

Stackspin, Release 1.0.0

• You can also use the API to list ssh keys and find it there. Read the Greenhost API documentation for more
information*

3. The ability to create DNS records that point to the VPS that gets created

Step 1: Create VPS and cluster configuration

We’ll use the create subcommand of the Stackspin CLI to create a VPS and a corresponding configuration file on the
provisioning machine.

Here is an example of a complete creation command:

$ python -m stackspin stackspin.example.org create \
--create-droplet \
--create-hostname stackspin.example.org \
--ssh-key-id 112 \
--create-domain-records \
--subdomain stackspin \
example.org

Let’s break down the arguments:

• --create-droplet: Use the Greenhost API to create a new VPS

• --create-hostname stackspin.example.org: Create a VPS with hostname stackspin.example.org

• --ssh-key-id 112: Use SSH key ID 112 (you can find your SSH key ID in the Cosmos Service Centre under
VPS Cloud -> Installation SSH Keys. Hover over a button there to see the ID in the URL it uses.

• --create-domain-records: Use the Greenhost API to create DNS records If you do this, you can skip Step
2: DNS Configuration. The following records are automatically created:

– An A record stackspin.example.org pointing to the VPS’s IP address

– A CNAME record *.stackspin.example.org pointing to stackspin.example.org.

• --subdomain stackspin: Only needed when you use --create-domain-records so the Greenhost API can
find your domain. If you use the --subdomain argument, the positional argument must not include the subdo-
main (i.e., in the example command the positional argument is example.org and not subdomain.example.
org).

If you want to host Stackspin on a root domain, you can omit the subdomain argument.

Step 2: DNS Configuration

Stackspin needs two DNS records that point to your cluster. It is important to create these DNS records before you start
the installation, so Stackspin can secure your connections with https certificates from Let’s Encrypt.

Create these two DNS records:

• An A record stackspin.example.org pointing to the cluster’s IP address,

• A CNAME record *.stackspin.example.org pointing to stackspin.example.org.

Note: It is also possible to host Stackspin on a domain without a dedicated subdomain. That does imply that the
included WordPress site will be hosted on your root domain (i.e. https://example.org). In that case, make these
DNS records instead:

• An A record example.org pointing to the cluster’s IP address,

• A CNAME record *.example.org pointing to example.org.

7

https://service.greenhost.net/cloud/ApiDoc#/default
https://service.greenhost.net
https://letsencrypt.org

Stackspin, Release 1.0.0

Step 3: Create Kubernetes cluster

Before you continue, make sure your DNS configuration is propagated. You can do this by making sure ping shows
your VPS’s IP address:

$ ping stackspin.example.org
Example output of the command:
PING stackspin.example.org (1.2.3.4) 56(84) bytes of data.
64 bytes from 1.2.3.4 (1.2.3.4): icmp_seq=1 ttl=62 time=9.43 ms
64 bytes from 1.2.3.4 (1.2.3.4): icmp_seq=2 ttl=62 time=52.5 ms
...

If you’ve never logged in to this machine before, you might need to accept the SSH hostkey before you can start the
installation process. To be sure, log in to your VPS once before you continue:

$ ssh root@stackspin.example.org

If necessary, check your hostkey fingerprint and type yes to continue. You should get a shell on your VPS. Type exit
to quit the shell and continue on your provisioning machine.

Run the install command with the CLI to completely configure your VPS for Stackspin.

$ python -m stackspin stackspin.example.org install

This will take a few minutes. It tries to connect to your VPS as the root user, then installs k3s. In addition it installs
command line tools kubectl (Kubernetes cli tool), flux (used for automated updates) and velero (Kubernetes resources
and persistent volumes backup) so you can manage the Kubernetes cluster from a shell on the VPS.

Note: It is possible to re-run the install command with a newer version of the installation script. Refer to the
Upgrade guide for details.

B. Install on existing cluster

Below, we describe how you can install Stackspin on an existing Kubernetes cluster. This process can be followed if
you have a “managed Kubernetes” setup, or if you want to use a Kubernetes version other than K3s.

Note:

• Installation on an existing Kubernetes cluster is still experimental and might not work depending on the setup
of your cluster/cloud provider. We are happy to receive feedback from your experiences but at the moment we
cannot make any guarantees!

Prerequisites

• A single-node Kubernetes cluster (multi-node support has not been tested by the Stackspin team)

• A kube_config.yml file for API access

System requirements

The system requirements depend on which applications you want to install into Stackspin. The following table shows
the minimum requirements for each application (1000m CPU means 1 core). Sum up the requirements of all the
applications you wish to install, together with the “Core components”. That is the amount of memory and CPU you

8 Chapter 2. Create and configure a kubernetes cluster

https://k3s.io/
https://kubernetes.io/docs/reference/kubectl/overview
https://fluxcd.io
https://velero.io

Stackspin, Release 1.0.0

need to successfully run Stackspin. If you try to run Stackspin on machines with less than the recommended system
requirements, you will notice that some “Pods” (application components) refuse to start.

Table 2: Stackspin application resource requirements
Application Memory CPU cores
Core components 5.0 GiB 1000m
Zulip 2.9 GiB 215m
WordPress 770 MiB 100m
Wekan 620 MiB 50m
Velero 625 MiB 20m
Nextcloud 2.4 GiB 360m
Monitoring 2.3 GiB 180m

Configure DNS

Stackspin needs two DNS records that point to your cluster. It is important to create these DNS records before you start
the installation, so Stackspin can secure your connections with https certificates from Let’s Encrypt.

Create these two DNS records:

• An A record stackspin.example.org pointing to the cluster’s IP address,

• A CNAME record *.stackspin.example.org pointing to stackspin.example.org.

Note: It is also possible to host Stackspin on a domain without a dedicated subdomain. That does imply that the
included WordPress site will be hosted on your root domain (i.e. https://example.org). In that case, make these
DNS records instead:

• An A record example.org pointing to the cluster’s IP address,

• A CNAME record *.example.org pointing to example.org.

Setup

• Create a directory containing your cluster configuration, i.e. mkdir -p clusters/stackspin.example.org

• Copy your kube_config.yml file inside your cluster config directory and rename it to kube_config_cluster.
yml: cp kube_config.yml clusters/stackspin.example.org/kube_config_cluster.yml

Now that you have a Kubernetes cluster running you can continue to Install Stackspin.

9

https://letsencrypt.org

Stackspin, Release 1.0.0

10 Chapter 2. Create and configure a kubernetes cluster

CHAPTER

THREE

INSTALL STACKSPIN

This guide explains how to install Stackspin on the Kubernetes cluster you have configured in the previous step.

3.1 Step 1: Flux configuration

Flux will run inside your Stackspin cluster to install and upgrade applications. It needs to be configured once, using
the flux command line tool and scripts provided by us in the Stackspin repository.

3.1.1 Configuration

Copy the file install/.flux.env.example to your cluster dir clusters/stackspin.example.org/.flux.env.
This file contains the last bit of information you need to configure. Make sure not to put any quotes around your values,
because that can make the resulting yaml files invalid. Also, using a dollar sign $ or double quote " may lead to
problems, so please avoid using those characters in the values.

Cluster information

The IP address of your cluster
ip_address=1.2.3.4
The FQDN of your cluster
domain=stackspin.example.org
The system administrator's email address. Alerts are sent to this address
admin_email=admin@example.org

Outgoing email

Stackspin uses SMTP to send emails. This is essential for finishing account setups with password recovery links.
Additionally, apps like Nextcloud, Zulip and Wordpress will be able to send email notifications from the email address
configured here. You also may receive alert notification emails from Stackspin’s monitoring system. See Email alerts
for more information about those alerts, especially during installation.

Because Stackspin does not include an email server, you need to obtain SMTP configuration details from your (external)
email provider.

11

Stackspin, Release 1.0.0

Backups with Velero (Optional)

You can enable Velero, a program that runs on your cluster and uploads backups of your cluster and user data to an S3
storage service of your choice.

If enabled, Velero will create a backup of your cluster once every night and upload it to the S3 storage you configure.
This includes:

• your cluster state. Technically speaking, it will back up all Kubernetes resources in your cluster; this includes
things like which applications are installed, including their version number and installation-time settings;

• persistent data of all applications: for example, single sign-on users that you created, Nextcloud files and meta-
data, WordPress site data and comments, Zulip chat history, etc. A single exception to this is Prometheus data
(statistics of system properties), which takes up a lot of space and we consider not valuable enough to back up.

It does not include anything on the VPS that you may have set up but is not part of Stackspin, like programs installed
via apt, or data added to the VPS disk not through Stackspin.

To configure Velero, edit the file clusters/stackspin.example.org/.flux.env, and configure the settings with
the backup_s3_ prefix.

Then continue with the installation procedure as described below. At the end of the installation procedure, you have to
install the velero application.

For information on how to use Velero with Stackspin, please see Backup.

3.2 Step 2: Install core applications

Before you can start, you need to execute a few commands from the installation directory on your provisioning ma-
chine. Don’t forget to replace stackspin.example.org with your domain.

We will use this variable in the following commands, set it to your cluster directory.

$ export CLUSTER_DIR=$PWD/clusters/stackspin.example.org

Make sure your virtualenv is activated.

$. env/bin/activate

Copy the installation kustomization to your cluster directory.

$ cp install/kustomization.yaml $CLUSTER_DIR/

Tell kubectl to use your cluster’s kube_config.

$ export KUBECONFIG=$CLUSTER_DIR/kube_config_cluster.yml

Ensure flux-system namespace is created.

$ kubectl get namespace flux-system 2>/dev/null || kubectl create namespace flux-system

This inserts the configuration from .flux.env into your cluster as a “secret”.

$ kubectl apply -k $CLUSTER_DIR

After you have executed that code, your terminal should show:

12 Chapter 3. Install Stackspin

https://velero.io

Stackspin, Release 1.0.0

secret/stackspin-cluster-variables created

Next, run:

$./install/install-stackspin.sh

This installs the core of Stackspin into your cluster. To see what’s included, check the flux2/infrastructure and
the flux2/core folders in the git repository.

3.3 Step 3: Install additional applications

After the script completes, you can install applications by running the other installation scripts in the install folder.
At the moment, we have scripts to install:

• Monitoring stack (Prometheus, Grafana, Loki, Eventrouter) ./install/install-app.sh monitoring

• Nextcloud and Onlyoffice with ./install/install-app.sh nextcloud

• Zulip chat with ./install/install-app.sh zulip

• Wekan with ./install/install-app.sh wekan

• WordPress with ./install/install-app.sh wordpress

• Velero with ./install/install-app.sh velero (only if you have configured it in Backups with Velero (Op-
tional)).

When the installation scripts complete, the application installation may still be running on the Stackspin cluster. You
can monitor the progress by running flux get kustomizations (use watch flux get kustomizations to get
updates). If all kustomizations have been applied correctly, you can monitor specific application releases by running
watch flux get helmreleases --all-namespaces.

3.4 Step 4: Validate setup

Once the installation has been completed, you can log in on https://dashboard.stackspin.example.org (as always: replace
stackspin.example.org with your domain). To get your login details, run:

$ python -m stackspin stackspin.example.org admin-credentials

Additionally, because Stackspin is still under development, we would like you to follow our Test your installation to
make sure that the setup process went well.

3.5 Step 5: Let us know!

We would love to hear about your experience installing Stackspin. If you encountered any problems, please create an
issue in our issue tracker. If you didn’t please still reach out as described on our contact page and tell us how you like
Stackspin so far. We want to be in communication with our users, and we want to help you if you run into problems.

3.3. Step 3: Install additional applications 13

https://open.greenhost.net/stackspin/stackspin
https://dashboard.stackspin.example.org
https://open.greenhost.net/groups/stackspin/-/issues
https://stackspin.net/contact.html

Stackspin, Release 1.0.0

14 Chapter 3. Install Stackspin

CHAPTER

FOUR

TEST YOUR INSTALLATION

Great that you want to take Stackspin for a test drive! This guide contains instructions to get you going, some pointers
on what we think would be useful to test, and guesses at what results of those tests would be useful to write down.
At any point please feel invited to test whatever functionality you come across, and reporting whatever you think is
interesting. Our contact details are listed here, and we’ll descibe how to give feedback via our issue tracker at the end
of these instructions.

During these instructions, please replace example.org with your own domain name.

4.1 Stackspin installation

First we’d like you to setup a Stackspin cluster by yourself, following the Installation overview documentation and make
sure you complete all steps.

4.2 Command line tests

Please refer to Testing which checks the overall functionality of your cluster and include the output in your feedback.

4.3 Testing Instructions for all apps

Please log in on https://dashboard.stackspin.example.org using single sign-on with your admin user email address and
see if you have admin rights granted (usually there’s an app specific admin panel available or admin functionality like
configuring users). Afterwards logout and log in again as the non-admin single-sign-on user you created earlier in the
Stackspin admin panel. You should not have any admin privileges now.

4.4 Testing Instructions for specific apps

4.4.1 Nextcloud

Please browse to Nextcloud using the link from your user dashboard app list and try to log in using single sign-on. Use
the button labeled Login with Stackspin. Please try logging in with your admin account and configure the email
settings as shown in the Usage doc. After that please log in with the user you created in the user panel.

15

https://stackspin.net/contact.html
https://dashboard.stackspin.example.org

Stackspin, Release 1.0.0

Files & synchronization

Please try uploading, downloading, moving or copying files.

Calendar

Please test the basic functionality of the calendar, including advanced features like recurrence, custom notifications or
inviting attendees.

Passwords

Please create and manage different passwords. In addition to that please try

Nextcloud sync applications

• Please try syncing with your smartphone or desktop using one of the apps mentioned in Nextcloud.

4.4.2 Onlyoffice

Creating a new office document

From the main Nextcloud webpage, please try to create a new office document, by clicking the round plus button near
the top of the screen, then picking the Document type with the blue icon (third one from below on my screen), and
enter a name for it. After that, please try some basic editing of the document, and save it. Maybe check you can open
it again afterwards, and that it has the contents that you saved earlier.

Collaborating on an office document

This part of the test requires the cooperation of another person; feel free to skip it now if that’s not convenient at this
point.

• First, try to share your document with a different user.

• Then, try to open the shared document from a few different user accounts simultaneously, and let all participants
edit the document mercilessly. There are also some collaboration features that you may want to try: on the left
of the Onlyoffice screen there are buttons for chat and for text comments.

4.4.3 Wordpress

Using the link in the dashboard app, please try to log in to WordPress as the user you created earlier by pressing “Log
in” and using the Login with OpenID Connect button.

Your user needs “Admin” privileges to edit the website.

16 Chapter 4. Test your installation

Stackspin, Release 1.0.0

4.5 Providing feedback

If you have not done so already, please create an account on https://open.greenhost.net (or log in with your existing
github account) and create a new issue using the Feedback template.

Thanks a lot for your testing work! We’ll use your input to try to improve Stackspin.

4.5. Providing feedback 17

https://open.greenhost.net
https://open.greenhost.net/stackspin/stackspin/issues/new

Stackspin, Release 1.0.0

18 Chapter 4. Test your installation

CHAPTER

FIVE

MANAGE STACKSPIN

5.1 Logging in

Stackspin includes a Single sign-on system. That means that you log in once, and then all the applications included in
Stackspin will know who you are, without you having to enter a password again.

Stackspin includes a Dashboard to manage these single sign-on users. The Dashboard is the starting point for all
Stackspin users. To use the Dashboard, log in to https://dashboard.stackspin.example.org. Here you can create, edit
and delete users, as well as see all the applications that run on your Stackspin cluster.

Your first login can happen in one of two ways:

1. Use the email address that was used during setup.

The admin email address has an account already. If you have access to its mailbox, press “Sign in” in the browser
and then press “Forget password?” to start a password recovery procedure.

2. If you do not have access to the administrator email address, ask your system administrator to run the following
command on their “provisioning machine” and share the admin credentials with you:

$ python3 -m stackspin stackspin.example.org admin-credentials

Note: these are the setup credentials, they will not be updated when you change the admin user’s password.

5.2 Login and logout limitations

Our single sign-on system uses an authentication protocol called OpenID Connect. This works the same way as “Log
in with Google” buttons you might be familiar with, but don’t worry: instead of contacting Google, it uses Stackspin’s
internal user database.

5.2.1 Limitations on login

The Stackspin dashboard allows you to define user privileges in two levels: “Admin” or “User”. When admin privileges
are given to a user for a specific application, the user needs to log out and into that application again. Some applications,
like WordPress and Zulip, have specific limitations. These are listed on the Applications page.

19

https://en.wikipedia.org/wiki/Single_sign-on
https://dashboard.stackspin.example.org
https://en.wikipedia.org/wiki/OpenID#OpenID_Connect_(OIDC)

Stackspin, Release 1.0.0

5.2.2 Limitations on logout

Users can log out by using the “Logout” button in any application. However, when they do so, they are only logged out
of that specific application and the single sign-on system. So if users want to log out of Zulip as well as WordPress, they
need to go to both applications, and click the logout button there. “Single sign-off” – logging out of all applications at
once – will be implemented in a future version of Stackspin.

5.2.3 Limitations on user management

It is important to realize that although Stackspin has a central user management system, the applications included in
stackspin also have their own user management systems. Users created inside applications are not synchronized to the
single sign-on system. For that reason, we recommend you always create new users inside the Dashboard.

5.3 Dashboard

After logging in, you will see an overview of all the installed applications. The “Launch app” button on this screen will
bring you to the application’s screen. If see a login screen, use the “log in with Stackspin” button to log in with your
current user. You will not have to enter credentials, because you are already logged in via the Dashboard.

5.4 Users

The Dashboard also features a “Users” tab, where you can manage the Stackspin users. At the moment, all users will
be able to log into all applications on your cluster with the “Log in with Stackspin” button. More fine grained control
will be added in the future.

To create a new user, click the “Add new user” button. You need to specify the user’s (full) name under “Name” and a
valid email address under “Email”.

Once you have created the user, they will not be automatically notified - please contact individual users and let them
know they can finish their account setup by opening any Stackspin-related URL and clicking the “Forget password?”
button on the “Login with Stackspin” screen. This will let them set up their password for the first time, and their account
will be active from that moment.

Note: The Dashboard currently allows all users to manage the other users. In the (near) future, only users with “admin”
privileges will be allowed to add, edit and remove other users.

Only add users for people that you trust.

To edit a user’s name or email address, or delete a user, press the “Configure” button on the right side in the user table.

If you want to delete several users, you can select them in the Users overview, using the select buttons on the left side.
Then press the “Delete” button on the top right of the table.

Note: A note on deleting users

Deleting users from the Dashboard makes sure they can’t log into applications anymore. However, the dashboard cannot
control the user’s data inside other applications.

To completely remove users from all the applications, you will need to remove them from inside the application’s admin
settings as well. Refer to the documentation of the specific application to see how that should be done.

20 Chapter 5. Manage Stackspin

Stackspin, Release 1.0.0

If you only remove a user from the dashboard, but not from the application, it is possible that this user keeps access to
the application through sessions inside application clients (for example the Zulip or Nextcloud desktop clients). These
sessions can also typically be ended through the application’s admin interface.

5.4. Users 21

Stackspin, Release 1.0.0

22 Chapter 5. Manage Stackspin

CHAPTER

SIX

APPLICATIONS

6.1 Dashboard

The Dashboard is always installed into a Stackspin cluster. It is an application developed specifically for Stackspin. It
allows you to manage Stackspin’s central user database. Soon, the dashboard will also allow you to configure, install
and remove applications and set access rights for users.

Administrators can read how to use the Dashboard in Manage Stackspin

6.2 Grafana

Grafana is a dashboard application that shows you information about the status of your cluster collected by Prometheus.

Users that have the “Admin” label turned on in the user panel, will have admin rights in Grafana. Other users are able
to see graphs, but can not change anything.

6.3 Nextcloud

Nextcloud is a file sharing and communication platform. These Nectcloud apps can be accessed from the top navigation
bar:

6.3.1 Files & synchronization

You can access your files with the Nextcloud Web interface and create, preview, edit, delete, share, and re-share files.
See the Files & synchronization user manual for general usage and Desktop and mobile synchronization for setting up
file sync on your mobile or dektop device.

6.3.2 Calendar

The Nextcloud Calendar app works similar to other calendar applications you can sync your Nextcloud calen-
dars and events with. Follow the Calendar user manual for general usage and the Nextcloud groupware docs
<https://docs.nextcloud.com/server/latest/user_manual/th/pim/index.html> for syncing your calendars with your mo-
bile or desktop devices.

23

https://grafana.com
https://prometheus.io
https://nextcloud.com/
https://docs.nextcloud.com/server/latest/user_manual/en/files/index.html
https://docs.nextcloud.com/server/latest/user_manual/th/files/desktop_mobile_sync.html
https://docs.nextcloud.com/server/latest/user_manual/en/pim/calendar.html

Stackspin, Release 1.0.0

6.3.3 Passwords

A simple, yet feature rich password manager for Nextcloud. See Passwors user handbook for more details, including
using the Browser extenstions.

These are the mobile apps that you can use to access your passwords from your smartphone:

• [NC passwords app for Android (by joleaf)](https://gitlab.com/joleaf/nc-passwords-app)

• [Nexcloud password app for Android (by daper)](https://github.com/daper/nextcloud-passwords-app)

• [Nextcloud passwords for iOS](https://github.com/johannes-schliephake/nextcloud-passwords-ios)

You’ll find how to configure file or calendar sync with your smartphone or desktop in the Nextcloud Groupware docu-
mentation.

6.4 Onlyoffice

Onlyoffice is an online document editing suite. Your can open documents in Onlyoffice by clicking them in Nextcloud.
You can open new documents by clicking the “Plus” button in Nextcloud and selecting Document, Spreadsheet or
Presentation.

6.5 Zulip

Zulip is a team chat application.

6.5.1 Roles management

Unfortunately, Zulip does not yet listen to the Stackspin roles, so once you have installed Zulip, you need to make one
of your users the owner. That allows this user to manage Zulip’s settings from inside the application. This owner can
also edit other users’ roles.

For this, you have to replace <your email> in the the following command and run it on your cluster:

` kubectl exec -n stackspin-apps zulip-0 -c zulip -- sudo -u zulip /home/zulip/
deployments/current/manage.py change_user_role <your email> owner --realm 2 `

6.5.2 Single sign-off

It is currently impossible to log out of the single sign-on system by logging out of Zulip. This is due to a limita-
tion in Zulip. This means that if you want to log into Zulip under a different account, you need to logout through
the Dashboard or another application first. You can also visit https://sso.stackspin.example.com/oauth2/
sessions/logout in your browser to end the SSO session.

24 Chapter 6. Applications

https://git.mdns.eu/nextcloud/passwords/wikis/users/index
https://git.mdns.eu/nextcloud/passwords/wikis/Users/Index#browser-extension
https://gitlab.com/joleaf/nc-passwords-app
https://github.com/daper/nextcloud-passwords-app
https://github.com/johannes-schliephake/nextcloud-passwords-ios
https://docs.nextcloud.com/server/latest/user_manual/th/pim/index.html
https://docs.nextcloud.com/server/latest/user_manual/th/pim/index.html
https://www.onlyoffice.com/connectors-nextcloud.aspx
https://zulip./
https://github.com/zulip/zulip/issues/22051
https://github.com/zulip/zulip/issues/22051

Stackspin, Release 1.0.0

6.6 Wekan

Wekan is a Kanban board application.

6.6.1 Single sign-off

It is currently impossible to log out of the single sign-on system by logging out of Wekan. This is due to a limitation
in Wekan. This means that if you want to log into Wekan under a different account, you need to logout through
the Dashboard or another application first. You can also visit https://sso.stackspin.example.com/oauth2/
sessions/logout in your browser to end the SSO session.

6.7 WordPress

WordPress is a website content management system.

6.7.1 Roles management

If you want admin privileges inside WordPress, you need to set this in the Dashboard. Then, you need to log in to
WordPress again.

If this is your first time logging in to WordPress, you have to log out and in again for your admin privileges to be applied.

For more information and technical details, refer to the issue in our issue tracker.

6.6. Wekan 25

https://wekan.github.io
https://github.com/wekan/wekan/issues/2905
https://github.com/wekan/wekan/issues/2905
https://wordpress.com
https://open.greenhost.net/stackspin/wordpress-helm/-/issues/97

Stackspin, Release 1.0.0

26 Chapter 6. Applications

CHAPTER

SEVEN

MIGRATING APPLICATION DATA

When you first start using Stackspin, you probably already have data that you do not want to lose. This guide will
focus on a use-case where you were already running the applications that are included with Stackspin. If you are
migrating from different applications, chances are you can still use similar methods to import the data into Stackspin-
based applications. For example, Zulip chat includes import functionality for Mattermost, Rocket.Chat, Gitter and
Slack.

Before you start any migration, make sure you use a machine that has kubectl access to the machine you want to
recover Zulip on. This is achieved by running the following on your provisioning machine:

export KUBECONFIG=$PWD/clusters/<your_cluster>/kube_config_cluster.yml``

Alternatively, you can run the commands from this guide in an SSH session on the machine you run Stackspin on.

Also make sure you have already installed the apps you want to migrate. Follow Step 3: Install additional applications
if you have not done so yet.

7.1 Nextcloud

To export and import your Nextcloud data into a Nextcloud running on Stackspin, follow the instructions in the
Nextcloud documentation. There are a few things that go slightly differently, because in Stackspin you need to run
the commands through kubectl.

In some commands, you need the Nextcloud pod name that you can get by running:

kubectl get pods -n stackspin-apps -l app.kubernetes.io/name=nextcloud

Note: the correct pod is the one that does not contain -cron.

• In the restore folders step, instead of the command rsync -Aax nextcloud-dirbkp/ nextcloud/, you need
to use kubectl cp:

replace nc-nextcloud-xxxxxxxxx-xxxxx with your NC pod name
kubectl -n stackspin-apps cp nextcloud-dirbkp nc-nextcloud-xxxxxxxxx-xxxxx:/var/www/

Note that kubectl cp, unlike rsync does not overwrite directories. So you need to use kubectl exec into
the pod to override the data directory.

For example, you could run the following to backup the current Nextcloud html directory and overwrite it with
your whole Nextcloud backup.

27

https://docs.nextcloud.com/server/latest/admin_manual/maintenance/migrating.html
https://docs.nextcloud.com/server/latest/admin_manual/maintenance/migrating.html
https://docs.nextcloud.com/server/latest/admin_manual/maintenance/restore.html#restore-folders

Stackspin, Release 1.0.0

kubectl -n stackspin-apps exec deploy/nc-nextcloud -it -- /bin/bash
cd /var/www
mv html html_backup
mv nextcloud-dirbkp html

• In the restore database step, follow the steps for MySQL (we use MariaDB, which is equivalent). Instead
of running mysql $command, run kubectl -n stackspin-apps exec nc-mariadb-0 -it -- mysql
$command. You can also ommit the -h [server] part, it will default to the correct server.

Go to https://files.stackspin.example.com and log in using the Log in with Stackspin button.

Because Stackspin uses an OIDC provider, it is likely that Nextcloud will not link the existing user from your previous
server to your Stackspin account.

If that happens, you can execute the following commands to transfer your old files to your new account:

Enter the Nextcloud container
kubectl -n stackspin-apps exec deploy/nc-nextcloud -it -- /bin/bash
Change to the www-data user
su -s /bin/bash www-data
Transfer ownership of your files to a new user
php occ files:transfer-ownership <source-user> <destination-user>

You can use `php occ files:transfer-ownership --help` to find out more
about this command

7.2 Wekan

Follow the backup instructions on the Wekan wiki to back-up your current Wekan instance.

These restore instructions are based on the Docker restore instructions, but adjusted for Stackspin. This guide assumes
you have a MongoDB dump called dump in your current directory.

Copy the dump into the Wekan MongoDB pod:

kubectl cp dump stackspin-apps/wekan-mongodb-0:/bitnami/mongodb/data

Then, enter the mongodb pod, and execute the import command. NOTE: this will remove all the data in your current
Wekan instance.

kubectl exec -n stackspin-apps wekan-mongodb-0 -it -- /bin/bash
cd /bitnami/mongodb/data
wekan-db mongorestore --drop --dir=/data/dump

You should now be able to use Wekan with your old data on https://wekan.stackspin.example.com.

28 Chapter 7. Migrating application data

https://docs.nextcloud.com/server/latest/admin_manual/maintenance/restore.html#restore-database
https://files.stackspin.example.com
https://github.com/wekan/wekan/wiki/Backup
https://github.com/wekan/wekan/wiki/Backup#restore-docker
https://wekan.stackspin.example.com

Stackspin, Release 1.0.0

7.3 WordPress

To import an existing WordPress site into Stackspin, you will need:

• A database dump of your old website’s database called dump.sql.

• A copy of the wp-content folder (usually located on the server at /var/www/html/wp-content) in a local
directory called wp-content.

Make sure the copy of the wp-content directory and the database dump are made at the same time.

We will go through the following steps:

1. Customize the WordPress installation in Stackspin

2. Import the Database

3. Import the files from wp-content

7.3.1 Customize the WordPress installation

This is for users with Kubernetes experience only. You can probably skip this step.

If necessary, you can override the following variables to reflect your current site’s configuration. Follow the Customizing
guide in that case.

• Set DB_PREFIX to the database prefix that your current WordPress uses (default: wp_)

• Set WP_VERSION to the version of your current WordPress site.

• Check if your current WordPress uses Redis. This is usually the case when you have the redis-cache plugin
installed. If so, enable redis by setting redis.enabled to true.

After installing, check if your site is available at www.stackspin.example.com.

7.3.2 Import the database

Make sure to remove all explicit URLs to your site from the database. If you host your site on example.com, WordPress
tends to put links in the database as https://example.com/<link to your post> or http://example.com/
<link to your post>. If you want to try this new deployment on a different domain, that will cause problems. To
fix this, search for https://example.com in your database dump and remove it, leaving only the relative URL /<link
to your post>. Repeat this step for http://example.com.

You need the WordPress database password. The easiest way to get it is to run:

helm get values -n stackspin-apps wordpress

And look for the value of database.auth.password

Now, import your database dump with the following command:

kubectl exec -n stackspin-apps -i wordpress-database-0 -- mysql -uwordpress -p<your␣
→˓password> --database=wordpress_db < dump.sql

A breakdown of the command:

• kubectl exec means you want to execute a command in a container

• -n stackspin-apps uses the stackspin-apps namespace

7.3. WordPress 29

Stackspin, Release 1.0.0

• -i makes sure that stdin is passed to the container. This means that we can use < dump.sql to import the
database export from your local system.

• We assume your database is running in a pod named wordpress-master-mariadb-master-0.

• -- tells kubectl to stop interpreting command line arguments as kubectl arguments

• mysql executes the mysql command in the container, with the following arguments: - -uwordpress sets the
MySQL user to wordpress - -p provides the prassword of the wordpress user - --database=wordpress_db
selects the wordpress_db database.

• < dump.sql reads the file dump.sql and inserts it into the mysql command. Change this if your MySQL
database dump has a different filename.

7.3.3 Import the files from wp-content/uploads

Similar to how you would normally use scp to copy files to a server, you can use kubectl cp to copy files to your
wordpress pod. Make sure wp-content/uploads does not contain a .htaccess file, because one is mounted by this chart.

kubectl cp wp-content/ wordpress-master-0:/var/www/wp-content-mount

You’ll have to change the ownership of the files to UID 33 (the www-data user in the WordPress container):

kubectl exec -it wordpress-master-0 -- chown -R 33:33 /var/www/wp-content-mount

Note: this will say chown: changing ownership of '/var/www/wp-content/uploads/.htaccess':
Read-only file system. Don’t worry, that’s the mounted .htaccess file. All the other files’ ownership will have
changed.

Your WordPress site should now be available under https://www.stackspin.example.com

7.4 Zulip

To migrate your data to Zulip, make an export of your existing Zulip server, following the export instructions available
here.

To recover the data, we are going to follow the import instructions available here, except we are going to do a few things
differently:

• Because Stackspin has already fully installed Zulip, instead of “Skipping step 3 during installation”, we will
remove the realm that the Stackspin installation creates.

• Do not edit settings.py in a Stackspin deployment of Zulip. That file is generated by the Zulip startup script.
If you need to change any settings, refer to the Customizing section of the documentation.

Copy your Zulip export to the Zulip pod by using kubectl cp, then enter a shell in your Zulip pod with kubectl
exec (replace the filename with the name of your export).

kubectl cp zulip-export-xxxxxxxx.tar.gz stackspin-apps/zulip-0:/home/zulip/deployments/
→˓current/
kubectl exec -n stackspin-apps zulip-0 -it -- /bin/bash

Inside the pod, change to the zulip user and access the current deployment folder. Then unpack the zulip export
.tar.gz.

30 Chapter 7. Migrating application data

https://www.stackspin.example.com
https://zulip.readthedocs.io/en/latest/production/export-and-import.html#data-export
https://zulip.readthedocs.io/en/latest/production/export-and-import.html#data-export
https://zulip.readthedocs.io/en/latest/production/export-and-import.html#import-into-a-new-zulip-server

Stackspin, Release 1.0.0

su zulip
cd ~/deployments/current
tar -xf zulip-export-xxxxxxxx.tar.gz

We start by removing the realm that was created by the Stackspin installation. NOTE: If you have already used Zulip
on Stackspin, this will delete all the data!

./manage.py delete_realm -r ''

The command will ask you to enter the name of the realm. In our case, the name is an empty string, so just press enter.
Zulip should now say something like:

Realm has been successfully permanently deleted.

Now, you can import the data from your Zulip export:

./manage.py import '' zulip-export-xxxxxxxx

7.4. Zulip 31

Stackspin, Release 1.0.0

32 Chapter 7. Migrating application data

CHAPTER

EIGHT

LOGGING

Logs from pods and containers can be read in different ways:

• In the cluster filesystem at /var/log/pods/ or /var/logs/containers/.

• Using kubectl logs

• Querying aggregated logs with Grafana, see below.

8.1 Central log aggregation

We use Promtail, Loki and Grafana for easy access of aggregated logs. The Loki documentation is a good starting
point how this setup works. There are two ways of viewing aggregated logs:

• Via the Grafana web interface

• Using the logcli command line tool

8.1.1 Viewing logs in Grafana

The Using Loki in Grafana gets you started with querying your cluster logs with Grafana. You will find the Loki
Grafana integration on your cluster at https://grafana.stackspin.example.org/explore together with some generic query
examples.

Please follow LogQL query examples for more LogQL query examples.

8.1.2 Query logs with logcli

Please refer to logcli for installing logcli on your Laptop. The create a port-forwarding to your cluster using the
kubectl tool:

$ kubectl -n stackspin port-forward pod/loki-0 3100

In another terminal you can now use logcli to query loki like this:

$ logcli query '{app=~".+"}'

Please follow LogQL query examples for more LogQL query examples.

Search older messages (in this case the last week and limit the output to 2000 lines):

$ logcli query --since=168h --limit=2000 --forward '{app="helm-controller"}'

33

https://kubernetes.io/docs/concepts/cluster-administration/logging
https://grafana.com/docs/loki/latest/clients/promtail/
https://grafana.com/oss/loki/
https://grafana.com/
https://grafana.com/docs/loki/latest/
https://grafana.com/docs/grafana/latest/datasources/loki
https://grafana.stackspin.example.org/explore
https://grafana.com/docs/loki/latest/getting-started/logcli/

Stackspin, Release 1.0.0

8.1.3 LogQL query examples

Please also refer to the LogQL documentation and the log queries documentation .

Query all aggregated logs (unfortunatly we can’t find a better way of doing this since LogQL always expects a stream
label to get queried):

{app=~".+"}

Query all logs for a keyword:

{app=~".+"} |= "error"

Query all k8s apps for errors using a regular expression, case-insensitive:

{app=~".+"} |~ `(error|fail|exception|fatal)`

Flux

Flux is responsible for installing applications. It uses four controllers:

• source-controller that tracks Helm and Git repositories like https://open.greenhost.net/stackspin/stackspin
for updates.

• kustomize-controller to deploy kustomizations that often install helmreleases.

• helm-controller to deploy the helmreleases.

• notification-controller that is responsible for inbound and outbound flux messages

Query all messages from the source-controller:

{app="source-controller"}

Query all messages from flux and helm-controller:

{app=~"(source-controller|helm-controller)"}

helm-controller messages containing wordpress:

'{app = "helm-controller"} |= "wordpress"'

helm-controller messages containing wordpress without unchanged events (to only show the installation mes-
sages):

'{app = "helm-controller"} |= "wordpress" != "unchanged"'

Filter out redundant helm-controller messages:

'{app="helm-controller"} !~␣
→˓`(unchanged|event=refreshed|method=Sync|component=checkpoint)`'

34 Chapter 8. Logging

https://grafana.com/docs/loki/latest/logql
https://grafana.com/docs/loki/latest/logql/log_queries/
https://fluxcd.io/
https://open.greenhost.net/stackspin/stackspin

Stackspin, Release 1.0.0

Cert-manager

Cert manager is responsible for requesting Let’s Encrypt TLS certificates.

Query cert-manager messages containing chat:

'{app="cert-manager"} |= "chat"'

Hydra

Hydra is the single sign-on system.

Show only warnings and errors from hydra:

{container_name="hydra"} != "level=info"

Debug oauth2 single sign-on with zulip:

{container_name=~"(hydra|zulip)"}

Etc

Query kubernetes events processed by the eventrouter app containing warning:

'{app="eventrouter"} |~ "warning"'

8.1. Central log aggregation 35

Stackspin, Release 1.0.0

36 Chapter 8. Logging

CHAPTER

NINE

MONITORING

For monitoring your Stackspin cluster we included the kube-prometheus-stack helm chart, which bundles the applica-
tions Grafana, Prometheus and Alertmanager, and also includes pre-configured Prometheus alerts and Grafana dash-
boards.

9.1 Grafana

Grafana can be accessed by clicking on the Monitoring icon in the Utilities Section of the dashboard. Use Stack-
spin single sign-on to login.

9.1.1 Dashboards

Browse through the pre-configured dashboards to explore metrics of your Stackspin cluster. Describing every dashboard
would be too much here, reach out for us if you don’t find what you are looking for.

9.1.2 Browse aggregated logs in Grafana

See Viewing logs in Grafana how to do this.

9.2 Prometheus

Prometheus can be reached by adding prometheus. in front of your cluster domain, i.e. https://prometheus.
stackspin.example.org. Until we configure single sign-on for prometheus you need to login using basic auth. The
user name is admin, the password can get retrieved by running

python -m stackspin CLUSTERNAME secrets | grep prometheus-basic-auth

37

https://artifacthub.io/packages/helm/prometheus-community/kube-prometheus-stack
https://grafana.com
https://prometheus.io
https://prometheus.io/docs/alerting/latest/alertmanager
https://open.greenhost.net/stackspin/stackspin/-/issues/371

Stackspin, Release 1.0.0

9.3 Alertmanager

Alertmanager can be reached by adding alertmanager. in front of your cluster domain, i.e. https://
alertmanager.stackspin.example.org. Until we configure single sign-on for prometheus you need to login using
basic auth. The user name is admin, the password can get retrieved by running

python -m stackspin CLUSTERNAME secrets | grep alertmanager-basic-auth

9.4 Email alerts

From time to time you might get email alerts sent by Alertmanager to the email address you have set in the cluster
configuration. Common alerts include (listed by the alertname references in the email body):

• KubeJobCompletion: A job did not complete successfully. Often happens during initial setup phase. If
the alert persists use i.e. kubectl -n stackspin-apps get jobs to see all jobs in the stackspin-apps
namespace and delete the failed job to silence the alert with i.e. kubectl -n stackspin-apps delete job
nc-nextcloud-cron-27444460.

• ReconciliationFailure: A flux helmRelease could not get reconciled successfully. This also happen often
during initial setup phase. It can have different root causes though. Use flux -n stackspin-apps get
helmreleases to view the current state of all helmReleases in the stackspin-apps namespace. In case
the helmRelease in question is stuck in a install retries exhausted or upgrade retries exhausted
state you can force a reconciliation with

flux -n stackspin-apps suspend helmrelease zulip
flux -n stackspin-apps resume helmrelease zulip

Depending on the underlying cause this will fix the helmRelease state or not. For more information on this
issue see helmrelease upgrade retries exhausted regression

38 Chapter 9. Monitoring

https://open.greenhost.net/stackspin/stackspin/-/issues/371
https://prometheus.io/docs/alerting/latest/alertmanager
https://fluxcd.io/docs/guides/helmreleases
https://github.com/fluxcd/flux2/issues/1878

CHAPTER

TEN

MAINTENANCE

10.1 Backup

10.1.1 On your provisioning machine

During the installation process, a cluster config directory is created on your provisioning machine, located in the top-
level sub-directory clusters in your clone of the stackspin git repository. Although these files are not essential for
your Stackspin cluster to continue functioning, you may want to back this folder up because it allows easy access to
your cluster.

10.1.2 On your cluster

Stackspin supports using the program Velero to make backups of your Stackspin instance to external storage via the S3
API. See Backups with Velero (Optional) in the installation instructions for setup details.

For the maintenance operations described below – in particular, restoring backups – you need the velero client program
installed, typically on your provisioning machine although you can also run it on the VPS if preferred. You may find it
at Velero’s github release page.

By default Velero will make nightly backups of the entire cluster (minus Prometheus data). To make a manual backup,
run

cluster$ velero create backup BACKUP_NAME --exclude-namespaces velero --wait

from your VPS. See velero --help for other commands, and Velero’s documentation for more information.

Note: in case you want to make an (additional) backup of application data via alternate means, all persistent volume
data of the cluster are stored in directories under /var/lib/Stackspin/local-storage.

10.2 Restore

Restoring from backups is a process that for now has to be done via the command line. We intend to allow doing this
from the Stackspin dashboard instead in the near future.

These instructions explain how to restore the persistent data of an individual app (such as Nextcloud, or Zulip) to a
previous point in time, from a backup to S3-compatible storage made using velero, on a Stackspin cluster that is in a
healthy state. Using backups to recover from more severe problems, like a broken or completely destroyed Stackspin
cluster, is also possible, by reinstalling the cluster from scratch and restoring individual app data on top of that. However,
that procedure is not so streamlined and not documented here. If you are in that situation, please reach out to us for
advice or assistence.

39

https://github.com/vmware-tanzu/velero/releases/latest
https://velero.io/docs/v1.4/
https://stackspin.net/contact.html

Stackspin, Release 1.0.0

10.2.1 Select backup

To show a list of available backups, perform the following command on your VPS:

$ kubectl get backup -A

Once you have chosen a backup to restore from, record its name as written in the kubectl output.

Note: Please be aware that for technical reasons the restore operation will restore not only the persistent data from
this backup, but also the app’s software version that was running at that time. Although the auto-update mechanism
should in turn update the app to a recent version, and the recent app version should be able to automatically perform any
necessary data format migrations on the old data, this operation has not been well tested for older backups, so please
proceed carefully. As an example of what could go wrong, Nextcloud requires upgrades to be done in a serial fashion,
never skipping a major version upgrade, so if your backup is from two or more major Nextcloud versions ago, some
manual intervention is required. If you have any doubts, please reach out to us.

10.2.2 Restore app data

Warning: Please note that restoring data is a destructive operation! It will replace the app’s data as they are now.
There is no way to undo a restore operation, unless you have a copy of the current app data, in the form of a current
Stackspin backup or an app-specific data export. For that reason, we recommend making another backup right
before beginning a restore operation.

To restore the data of app $app from the backup named $backup, perform the following commands:

$ flux suspend kustomization $app
$ flux suspend helmrelease -n stackspin-apps $app
$ kubectl delete all -n stackspin-apps -l stackspin.net/backupSet=$app
$ kubectl delete pvc -n stackspin-apps -l stackspin.net/backupSet=$app
$ velero restore create arbitrary-name-of-restore-operation --from-backup=$backup -l␣
→˓stackspin.net/backupSet=$app

At this point, please first wait for the restore operation to finish, see text below.

$ flux resume helmrelease -n stackspin-apps $app
$ flux resume kustomization $app

Note: Specifically for Nextcloud, the kubectl delete pvc ... command might hang due to a Kubernetes job that
references that PVC. To solve that, look for such jobs using kubectl get job -n stackspin-apps and delete any
finished ones using kubectl delete job That should let the kubectl delete pvc ... command finish; if
it was already terminated, run it again.

The velero restore create ... command initiates the restore operation, but it doesn’t wait until the operation
is complete. You may use the commands suggested in the terminal output to check on the status of the operation.
Additionally, once the restore operation is finished, it may take some more time for the various app components to be
fully started and for the app to be operational again.

40 Chapter 10. Maintenance

https://stackspin.net/contact.html

Stackspin, Release 1.0.0

10.3 Change the IP of your cluster

In case your cluster needs to migrate to another IP, make sure to update the IP address in /etc/rancher/k3s/k3s.
yaml and, if applicable, your local kube config and inventory.yml in the cluster directory clusters/stackspin.
example.org.

10.4 Delete evicted pods

In case your cluster disk is full, kubernetes taints the node with DiskPressure. Then it tries to evict pods, which is
pointless in a single node setup but can still happen. We have experienced hundreds of pods in evicted state that still
showed up after DiskPressure had recovered. See also the out of resource handling with kubelet documentation.

You can delete all evicted pods with this command:

$ kubectl get pods --all-namespaces -ojson | jq -r '.items[] | select(.status.reason!
→˓=null) | select(.status.reason | contains("Evicted")) | .metadata.name + " " + .
→˓metadata.namespace' | xargs -n2 -l bash -c 'kubectl delete pods $0 --namespace=$1'

10.5 Apply changes to flux variables

Before installing, you configured cluster variables in your cluster directory in .flux.env. If you change any of these
variables after installation you can apply the changes by following the Step 2: Install core applications instructions
until the step kubectl apply -k $CLUSTER_DIR. Then, use the following command that will apply the changes to
all installed kustomizations:

$ flux get -A kustomizations --no-header | awk -F' ' '{system("flux reconcile -n " $1 "␣
→˓kustomization " $2)}'

10.6 Run Nextcloud occ commands

Nextcloud includes a CLI tool called occ (“OwnCloud Console”). This tool can be used for all kinds of tasks you
might want to do as a system administrator.

To use the tool, you need to enter Nextcloud’s “pod” and change to the correct user. The following commands achieve
that:

exec opens a root terminal inside the pod:

$ kubectl -n stackspin-apps exec deploy/nc-nextcloud -it -- bash

Change to the www-data user:

$ su -s /bin/bash www-data

Run occ:

$ php occ list

10.3. Change the IP of your cluster 41

https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/tasks/administer-cluster/out-of-resource/

Stackspin, Release 1.0.0

42 Chapter 10. Maintenance

CHAPTER

ELEVEN

UPGRADE GUIDE

Most of the time, a Stackspin cluster will pull and apply updates from our repository automatically. From time to time
though, changes are introduced that require some manual action. We mark this by increasing the minor component of
the Stackspin version number.

General instructions for upgrading to a new minor (0.7 -> 0.8) or major (0.x -> 1.0) version:

1. Check out the new branch on provisioning machine:

git checkout v1.0

2. Load python virtualenv if necessary.

3. Update python packages:

pip install -r requirements.txt

4. Run the ansible playbook:

python -m stackspin stackspin.example.org install

5. Run the upgrade script:

./bin/upgrade-scripts/to-1.0/upgrade.sh

6. Check that all components are being upgraded by flux:

watch flux get kustomizations

This may take quite a while, but all Kustomizations should become Ready after some time. If not, investigate
and/or ask for support.

11.1 From 0.8 to 1.0

Please follow the general upgrade guide above.

After running the last step (upgrade script), flux will update all components. In some cases an error can occur at that
step.

• If the nextcloud upgrade fails because the setup-apps job consistently fails with App “ONLYOFFICE” cannot
be installed because it is now compatible with this version of the server., then manually run php occ app:update
–all and then php occ app:enable onlyoffice inside the nextcloud container.

• If the kube-system-config Kustomization fails calling a validation webhook, simply retry it with flux reconcile
kustomization kube-system-config.

43

Stackspin, Release 1.0.0

11.2 Upgrading to 0.8

Note: 0.8 introduce many breaking changes. We gave our best to make the upgrade smooth but this will require a lot
of manual intervention. Please reach out to us for help if needed !

When upgrading to version 0.8 OpenAppStack will be renamed to its final name: Stackspin. This comes with many
changes, some of which need to be applied manually.

We have written a script to automate a lot of the preparations for the upgrade. However, afterwards you might need to
get your hands dirty to get all your applications to work again. Read this whole upgrade guide carefully, before you
get started!

Log in to your Stackspin server

$ ssh <server>

Download our upgrade script

$ wget https://open.greenhost.net/stackspin/stackspin/-/raw/main/bin/upgrade-scripts/to-
→˓0.8.0/rename-to-stackspin.sh
$ chmod +x rename-to-stackspin.sh

First of all, if you have any -override configmaps or secrets, you’ll want to move them from the oas namespace to
the stackspin namespace, and from oas-apps to stackspin-apps (you also need to make these namespaces first).
You also need to rename them from oas-X to stackspin-X. You can use a command like this to rename the cm and
move it to the right namespace.

$ kubectl get cm -n oas-apps oas-$APP-override -o json | jq '.metadata.name="stackspin-
→˓$APP-override"' | jq '.metadata.namespace="stackspin-apps"' | kubectl apply -f -

This script will cause serious down time and it will not do everything for you. Rather, it will prepare your cluster
for the upgrade.

The script does the following:

1. Install jq

2. Shut down the cluster, make a back-up of the data, and bring the cluster back up

3. Copy all relevant oas-* secrets to stackspin-*

4. Move all PersistentVolumeClaims to the stackspin and stackspin-apps namespaces and sets the Persis-
tentVolumes ReclaimPolicy to “Retain” so your data is not accidentally deleted.

5. Delete all OAS flux kustomizations

6. Delete the oas and oas-apps namespace

7. Create the new stackspin source and kustomization

Because there are not many Stackspin users yet, the script can need some manual adjustments. It was written for
clusters on which all applications are installed. If you have not installed some of the applications, please remove these
applications form the script manually.

Execute the upgrade preparation script:

$./rename-to-stackspin.sh

44 Chapter 11. Upgrade guide

Stackspin, Release 1.0.0

After this, you need to update secrets and Flux in the cluster by running install/install-stackspin.sh. Then re-
install applications by running install/install-app.sh <app> from the Stackspin repository. See the application
specific upgrade guides below.

After all your applications work again, you can clean up the old secrets and reset the Persistent Volume ReclaimPolicy
to Delete

$ wget https://open.greenhost.net/stackspin/stackspin/-/raw/main/bin/upgrade-scripts/to-
→˓0.8.0/cleanup.sh
$ chmod +x cleanup.sh
$./cleanup.sh

11.2.1 Nextcloud

Your SSO users will have new usernames, because the OIDC provider has been renamed from oas to stackspin and
because the new SSO system uses UUIDs to uniquely identify users.

You can choose from these options:

1. Manually re-upload and re-share your files after logging in to your new user for the first time.

2. It is possible to transfer files from your previous user to the new user. To do so, find your new username. It is
visible in Settings -> Sharing behind “Your Federated Cloud ID” after you’ve logged out and in to Nextcloud
with the new SSO (the part before the @).

1. Exec into the Nextcloud container

$ kubectl exec -n stackspin-apps nc-nextcloud-xxx-xxx -it -- /bin/bash

2. Change to the www-data user

$ su www-data -s /bin/bash

3. Repeat this command for each username

$ php occ files:transfer-ownership oas-<old username> <new user ID>

Note: the files are tranferred to a subfolder in the new user’s directory

Depending on when you first installed Nextcloud, the setup-apps job may fail during the upgrade. If that happens,
execute these commands in order to update the failing apps to their newest version, and to remove old files that can
cause problems.

kubectl exec -n stackspin-apps deployment/nc-nextcloud -- rm -r /var/www/html/custom_
→˓apps/onlyoffice
kubectl exec -n stackspin-apps deployment/nc-nextcloud -- rm -r /var/www/html/custom_
→˓apps/sociallogin
flux suspend hr -n stackspin-apps nextcloud && flux resume hr -n stackspin-apps nextcloud

11.2. Upgrading to 0.8 45

Stackspin, Release 1.0.0

11.2.2 Rocket.Chat

We replaced Rocket.Chat with Zulip in this release. If you want to migrate your Rocket.Chat data to your new Zulip
installation please refer to Import from Rocket.Chat.

11.2.3 Monitoring

The monitoring stack will work after the upgrade, but monitoring data from the previous version will not be available.

11.2.4 Wekan

In our testing we didn’t need to change anything for Wekan to work.

11.2.5 WordPress

In our testing we didn’t need to change anything for WordPress to work.

11.3 Upgrading to 0.7.0

Because of problems with Helm and secret management we had to move away from using a helm chart for application
secrets, and now use scripts that run during installation to manage secrets. Because we have removed the oas-secrets
helm chart, Flux will remove the secrets that it has generated. It is important that you back up these secrets before
switching from v0.6 to v0.7!

Note: Before you start, please ensure that you have the right yq tool installed, because you will need it later. There
are two very different versions of yq. The one you need is the go based yq from Mike Farah, which installs the same
binary name as the python-yq one, while both have different command sets. The yq needed here can be installed by
running sudo snap install yq, brew install yq or with other methods from the yq installation instructions.

If you’re unsure which yq you have installed, look at the output of yq --help and make sure eval shows up under
Available Commands:.

To back-up your secrets, run the following script:

#!/usr/bin/env bash

mkdir secrets-backup

kubectl get secret -o yaml -n flux-system oas-cluster-variables > secrets-backup/oas-
→˓cluster-variables.yaml
kubectl get secret -o yaml -n flux-system oas-wordpress-variables > secrets-backup/oas-
→˓wordpress-variables.yaml
kubectl get secret -o yaml -n flux-system oas-wekan-variables > secrets-backup/oas-
→˓wekan-variables.yaml
kubectl get secret -o yaml -n flux-system oas-single-sign-on-variables > secrets-backup/
→˓oas-single-sign-on-variables.yaml
kubectl get secret -o yaml -n flux-system oas-rocketchat-variables > secrets-backup/oas-
→˓rocketchat-variables.yaml
kubectl get secret -o yaml -n flux-system oas-kube-prometheus-stack-variables > secrets-

(continues on next page)

46 Chapter 11. Upgrade guide

https://zulip.com
https://zulip.com
https://api.zulip.com/help/import-from-rocketchat
https://open.greenhost.net/openappstack/openappstack/-/issues/891
https://mikefarah.github.io/yq
https://github.com/kislyuk/yq
https://mikefarah.github.io/yq/#install

Stackspin, Release 1.0.0

(continued from previous page)

→˓backup/oas-kube-prometheus-stack-variables.yaml
kubectl get secret -o yaml -n oas oas-prometheus-basic-auth > secrets-backup/
→˓oas-prometheus-basic-auth.yaml
kubectl get secret -o yaml -n oas oas-alertmanager-basic-auth > secrets-backup/
→˓oas-alertmanager-basic-auth.yaml
kubectl get secret -o yaml -n flux-system oas-oauth-variables > secrets-backup/oas-
→˓oauth-variables.yaml
kubectl get secret -o yaml -n flux-system oas-nextcloud-variables > secrets-backup/oas-
→˓nextcloud-variables.yaml

This script assumes you have all applications enabled. You might get an error like:

Error from server (NotFound): secrets "oas-wekan-variables" not found

This is not a problem, but it does mean you need to add an oauth secret for Wekan to the file
secrets-backup/oas-oauth-variables.yaml. Copy one of the lines under “data:”, rename the field to
wekan_oauth_client_secret and enter a different random password. Make sure to base64 encode it (echo "<your
random password>" | base64).

This script creates a directory called secrets-backup and places the secrets that have been generated by Helm in it
as yaml files.

Now you can upgrade your cluster by running kubectl -n flux-system patch gitrepository openappstack
--type merge -p '{"spec":{"ref":{"branch":"v0.7"}}}' or by editing the gitrepository object man-
ually with kubectl -n flux-system edit gitrepository openappstack and setting spec.ref.branch to
v0.7.

Flux will now start updating your cluster to version 0.7. This process will fail, because it will remove the secrets that
you just backed up. Make sure that the oas-secrets helmrelease has been removed by running flux get hr -A.
You might also see that some helmreleases start failing to be installed because important secrets do not exist anymore.

As soon as the oas-secrets helmrelease does not exist anymore, you can run the following script:

#!/usr/bin/env bash

Again: make sure you use https://github.com/mikefarah/yq -- install with `snap install␣
→˓yq`
yq eval 'del(.metadata.annotations,.metadata.labels,.metadata.creationTimestamp,.
→˓metadata.resourceVersion,.metadata.uid)' secrets-backup/oas-wordpress-variables.yaml |␣
→˓kubectl apply -f -
yq eval 'del(.metadata.annotations,.metadata.labels,.metadata.creationTimestamp,.
→˓metadata.resourceVersion,.metadata.uid)' secrets-backup/oas-wekan-variables.yaml |␣
→˓kubectl apply -f -
yq eval 'del(.metadata.annotations,.metadata.labels,.metadata.creationTimestamp,.
→˓metadata.resourceVersion,.metadata.uid)' secrets-backup/oas-single-sign-on-variables.
→˓yaml | kubectl apply -f -
yq eval 'del(.metadata.annotations,.metadata.labels,.metadata.creationTimestamp,.
→˓metadata.resourceVersion,.metadata.uid)' secrets-backup/oas-rocketchat-variables.yaml␣
→˓| kubectl apply -f -
yq eval 'del(.metadata.annotations,.metadata.labels,.metadata.creationTimestamp,.
→˓metadata.resourceVersion,.metadata.uid)' secrets-backup/oas-kube-prometheus-stack-
→˓variables.yaml | kubectl apply -f -
yq eval 'del(.metadata.annotations,.metadata.labels,.metadata.creationTimestamp,.
→˓metadata.resourceVersion,.metadata.uid)' secrets-backup/oas-prometheus-basic-auth.yaml␣

(continues on next page)

11.3. Upgrading to 0.7.0 47

Stackspin, Release 1.0.0

(continued from previous page)

→˓| kubectl apply -f -
yq eval 'del(.metadata.annotations,.metadata.labels,.metadata.creationTimestamp,.
→˓metadata.resourceVersion,.metadata.uid)' secrets-backup/oas-alertmanager-basic-auth.
→˓yaml | kubectl apply -f -
yq eval 'del(.metadata.annotations,.metadata.labels,.metadata.creationTimestamp,.
→˓metadata.resourceVersion,.metadata.uid)' secrets-backup/oas-oauth-variables.yaml |␣
→˓kubectl apply -f -
yq eval 'del(.metadata.annotations,.metadata.labels,.metadata.creationTimestamp,.
→˓metadata.resourceVersion,.metadata.uid)' secrets-backup/oas-nextcloud-variables.yaml |␣
→˓kubectl apply -f -

Again this script assumes you have all applications installed. If you get the following error, you can ignore it:

error: error validating "STDIN": error validating data: [apiVersion not set, kind not␣
→˓set]; if you choose to ignore these errors, turn validation off with --validate=false

Now Flux should succeed in finishing the update. Some helmreleases or kustomizations might have already failed
because the secrets did not exist. Once failed, you can retrigger reconciliation of a kustomization using the commands
flux reconcile kustomization ... or flux reconcile helmrelease This can take quite a while (over
an hour some times), because Flux waits for some long timeouts before giving up and re-starting a reconciliation.

11.3.1 Potential upgrade issues

Some errors we’ve seen during our own upgrade process, and how to solve them:

SSO helm upgrade failed

oas single-sign-on False Helm upgrade failed: template: single-sign-on/
→˓templates/secret-oauth2-clients.yaml:9:55: executing "single-sign-on/templates/secret-
→˓oauth2-clients.yaml" at <b64enc>: invalid value; expected string 0.2.2 False

This means that the single-sign-on helmrelease was created with empty oauth secrets. The secrets will get a value
once the core kustomization is reconciled: flux reconcile ks core should solve the problem.

If that does not solve the problem, you should check if the secret contains a value for all the apps:

kubectl get secret -n flux-system oas-oauth-variables -o yaml
apiVersion: v1
data:
grafana_oauth_client_secret: <redacted>
nextcloud_oauth_client_secret: <redacted>
rocketchat_oauth_client_secret: <redacted>
userpanel_oauth_client_secret: <redacted>
wekan_oauth_client_secret: <redacted>
wordpress_oauth_client_secret: <redacted>

...

If your secret lacks one of these variables, use kubectl edit to add them. You can use any password generator to
generate a password for it. Make sure to base64 encode the data before you enter it in the secret.

48 Chapter 11. Upgrade guide

Stackspin, Release 1.0.0

Loki upgrade retries exhausted

While running flux get helmrelease -A, you’ll see:

oas loki False upgrade retries exhausted 2.5.2 ␣
→˓False

This happens sometimes because Loki takes a long time to upgrade. Usually it is solved by running flux reconcile
hr loki -n oas again.

11.4 Upgrading to 0.6.0

A few things are important when upgrading to 0.6.0:

• We now use Flux 2 and the installation procedure has been overhauled. For this reason we advice you to set up
a completely new cluster.

• Copy your configuration details from settings.yaml to a new .flux.env. See install/.flux.env.
example and the Installation overview instructions for more information.

Please reach out to us if you are using, or plan to use OAS in production.

11.5 Upgrading from 0.4.0 to 0.5.0

Unfortunately we can’t ensure a smooth upgrade for this version neither. Please read the section below on how to do
an upgrade by installing a the new OAS version from scratch after backing up your data.

11.6 Upgrading from 0.3.0 to 0.4.0

There is no easy upgrade path from version 0.3.0 to version 0.4.0. As far as we know, nobody was running OpenApp-
Stack apart from the developers, so we assume this is not a problem.

If you do need to upgrade, this is how you can migrate your data. Backup all the data available under /var/lib/
OpenAppStack/local-storage, create a new cluster using the installation instructions, and putting back the data.
This migration procedure might not work perfectly.

Use kubectl get pvc -A on your old cluster to get a mapping of all the PVC uuids (and thus their folder names in
/var/lib/OpenAppStack/local-storage) to the pods they are bound to.

Then, delete your old OpenAppStack, and install a new one with version number 0.4.0 or higher. You can upload
your backed up data into /var/lib/OpenAppStack/local-storage. All PVCs will have new unique IDs (and thus
different folder names). You have to manually match the folders from your backup with the new folders.

Additionally, if you want to re-use your old settings.yaml file, this data needs to be added to it:

backup:
s3:
Disabled by default. To enable, change to `true` and configure the
settings below. You'll also want to add "velero" to the enabled
applications a bit further in this file.
Finally, you'll also need to provide access credentials as
secrets; see the documentation:

(continues on next page)

11.4. Upgrading to 0.6.0 49

https://openappstack.net/contact.html

Stackspin, Release 1.0.0

(continued from previous page)

https://docs.openappstack.net/en/latest/installation_instructions.html#step-2-
→˓optional-cluster-backups-using-velero
enabled: false
URL of S3 service. Please use the principal domain name here, without the
bucket name.
url: "https://store.greenhost.net"
Region of S3 service that's used for backups.
For some on-premise providers this may be irrelevant, but the S3
apparently requires it at some point.
region: "ceph"
Name of the S3 bucket that backups will be stored in.
This has to exist already: Velero will not create it for you.
bucket: "openappstack-backup"
Prefix that's added to backup filenames.
prefix: "test-instance"

A whitelist of applications that will be enabled.
enabled_applications:
System components, necessary for the system to function.
- 'cert-manager'
- 'letsencrypt-production'
- 'letsencrypt-staging'
- 'ingress'
- 'local-path-provisioner'
- 'single-sign-on'
The backup system Velero is disabled by default, see settings under `backup` above.
- 'velero'
Applications.
- 'grafana'
- 'loki'
- 'promtail'
- 'nextcloud'
- 'prometheus'
- 'rocketchat'
- 'wordpress'

11.7 Upgrading to 0.3.0

Upgrading from versions earlier than 0.3.0 requires manual intervention.

• Move your local settings.yml file to a different location:

$ cd CLUSTER_DIR
$ mkdir -p ./group_vars/all/
$ mv settings.yml ./group_vars/all/

• Flux is now used to install and update applications. For that reason, we need you to remove all helm charts
(WARNING: You will lose your data!):

$ helm delete --purge oas-test-cert-manager oas-test-local-storage \
oas-test-prometheus oas-test-proxy oas-test-files`

50 Chapter 11. Upgrade guide

https://fluxcd.io

Stackspin, Release 1.0.0

– After removing all helm charts, you probably also want to remove all the pvcs that are left behind. Flux
will not re-use the database PVCs created for these applications. Find all the pvcs by running kubectl
get pvc --namespace oas-apps and kubectl get pvc --namespace oas

11.7. Upgrading to 0.3.0 51

Stackspin, Release 1.0.0

52 Chapter 11. Upgrade guide

CHAPTER

TWELVE

CUSTOMIZING

In this guide we show how to customize your cluster installation, i.e. if you want to install additional applications, or
change the configuration of extisting apps installed by Stackspin this is the right place. Customizing other parts of your
cluster is possible but not yet covered by this guide. This guide is written for users with advanced knowledge of the
tools behind Stackspin, most importantly: Kubernetes, Helm, Ansible and Flux 2.

Warning: Customizing your Stackspin cluster could break your cluster in a way that it’s not easy to recover. Please
be aware of the potential risk when proceeding.

12.1 Prerequisites

• A functional Stackspin cluster installed following the Stackspin installation instructions

12.2 Customize Stackspin applications

Apps deployed by Stackspin are configured using helm values from templates in flux2/apps/<application>/
release.yaml. It is possible to override values from the helmrelease by adding a custom ConfigMap or Secret
to the cluster. The secret or configmap name is specified in the valuesFrom section of the release.yaml file. Read
more in the Flux documentation

12.2.1 Example: Customize Nextcloud to work with staging certificates

Our CI pipeline works with staging certificates from Let’s Encrypt, for that reason we need to allow in-
secure connections for the integration with ONLYOFFICE. You can find the file at install/overrides/
stackspin-nextcloud-override.yaml.

To apply it, run the following commands:

If you want to run this on your provisioning machine, tell kubectl to use your cluster:

$ export KUBECONFIG=$PWD/clusters/stackspin.example.org/kube_config_cluster.yml

Check the current state of the helmrelease you want to modify:

$ flux get helmrelease -A

If all is OK, make sure to apply your override configmap or secret in the same namespace as your helmrelease with the
‘-n’ argument

53

installation_instructions.html
https://fluxcd.io/docs/migration/helm-operator-migration/#values-from-sources

Stackspin, Release 1.0.0

$ kubectl apply \
-n stackspin-apps \
-f ./install/overrides/stackspin-nextcloud-override.yaml

12.3 Custom flux repository

Stackspin uses Flux 2 to install and auto-update applications. If Customize Stackspin applications is not enough and
you need more advanced customization, i.e. to install extra applications or other things into the Kubernetes cluster, our
advice would be to set up your own custom Flux git repository.

Please refer to the Stackspin Flux example and the Flux 2 documentation for more information.

12.3.1 Adding custom apps to the cluster

When you do this, you are fully responsible for keeping those applications secure and updated. If any of those applica-
tions is insecure, that can also invalidate the security of your Stackspin applications, because they are part of the same
cluster and VPS.

Please follow our Gitlab issue template for adding new apps. Not all steps are needed if you only want to add a new
app to your cluster though (see the template for details). If you intend to contribute to Stackspin with a new app merge
request please make sure to check all boxes.

54 Chapter 12. Customizing

https://open.greenhost.net/stackspin/stackspin-flux-example
https://fluxcd.io/docs
https://open.greenhost.net/stackspin/stackspin/-/raw/main/.gitlab/issue_templates/new_app.md

CHAPTER

THIRTEEN

TROUBLESHOOTING

If you run into problems, there are a few things you can do to research the problem. This document describes what you
can do.

Note: cluster$ indicates that the commands should be run as root on your Stackspin machine. All other commands
need to be run on your provisioning machine.

We would love to hear from you! If you have problems, please create an issue in our issue tracker or reach out as
described on our contact page. We want to be in communication with our users, and we want to help you if you run
into problems.

13.1 Known issues

If you run into a problem, please check our issue tracker to see if others have run into the same problem. We might
have suggested a workaround or temporary solution in one of our issues. If your problems is not described in an issue,
please open a new one so we can solve the problems you encounter.

13.2 SSH access

You can SSH login to your VPS. Some programs that are available to the root user on the VPS:

• kubectl, the Kubernetes control program. The root user is connected to the cluster automatically.

• helm is the “Kubernetes package manager”. Use i.e. helm ls --all-namespaces to see what apps are in-
stalled in your cluster. You can also use it to perform manual upgrades; see helm --help.

• flux is the flux command line tool

13.3 Using kubectl to debug your cluster

You can use kubectl, the Kubernetes control program, to find and manipulate your Kubernetes cluster. Once you have
installed kubectl, to get access to your cluster with the Stackspin CLI:

$ python -m stackspin stackspin.example.org info

Look for these lines in the output:

55

https://open.greenhost.net/groups/stackspin/-/issues
https://stackspin.net/contact.html
https://open.greenhost.net/groups/stackspin/-/issues
https://fluxcd.io

Stackspin, Release 1.0.0

To use kubectl with this cluster, copy-paste this in your terminal:
export KUBECONFIG=/home/you/projects/stackspin/clusters/stackspin.example.org/kube_
→˓config_cluster.yml

Copy the whole export line into your terminal. In the same terminal window, kubectl will from now on connect
to your cluster.

Alternatively, use SSH to log into your machine, and kubectl will be available there.

13.3.1 Application installation or upgrade failures

Application installations and upgrades are managed by flux. Flux uses helm-controller to install and upgrade applica-
tions with helm charts.

An application installed with Flux consists of a kustomization. This resource defines where the information about the
application is stored in our Git repository. The kustomization contains a helmrelease, which is an object that represents
an installation of a Helm chart. Read more about the difference between kustomizations and helmreleases in the flux
documentation.

Be aware that there is a difference between Flux Kustomization objects and Kubernetes kustomizations. In this section
we refer to the Flux kustomizations.

To find out if all kustomizations have been applied correctly, run the following flux command in your cluster or from
the provisioning machine:

cluster$ flux get kustomizations --all-namespaces

If all your kustomizations are in a Ready state, take a look at your helmreleases:

cluster$ flux get helmreleases -A

If there is an issue, use kubectl to inspect the respective service, for example nginx:

$ kubectl describe helmrelease -n stackspin nginx

If the error message mentions a problem in a HelmChart or GitRepository, you can get information about those
objects in a similar fashion:

For git repositories:

$ flux get source git

For helm repositories:

$ flux get source helm

For helm charts:

$ flux get source chart

For more information, use flux --help, or flux get --help.

HelmReleases that have no problems with their sources, but still fail, can often be fixed by simply suspending and
resuming them. Use these flux commands:

$ flux --namespace NAMESPACE suspend helmrelease NAME
$ flux --namespace NAMESPACE resume helmrelease NAME

56 Chapter 13. Troubleshooting

https://fluxcd.io
https://fluxcd.io/docs/components/helm/
https://helm.sh/docs/topics/charts/
https://fluxcd.io/docs
https://fluxcd.io/docs
https://fluxcd.io/docs/components/kustomize/kustomization/
https://kubectl.docs.kubernetes.io/references/kustomize/glossary/#kustomization

Stackspin, Release 1.0.0

If your HelmRelease is outdated, you can often resolve complications by telling Flux to reconcile them. This will tell
Flux to compare the HelmRelease’s current state with the desired state.

cluster$ flux reconcile helmrelease nextcloud

Viewing upgrade history

To see when an application was updated to which version, you can use the helm history command. For example, to
see the update history for Zulip, you can run:

$ helm history -n stackspin-apps zulip

13.3.2 Debugging on a lower level

You can also debug the pods that run applications. To get an overview of all pods, run:

$ kubectl get pods --all-namespaces

This will show you all pods. Check for failing pods by looking at the READY column. If you find failing pods, you can
access their logs with:

$ kubectl --namespace NAMESPACE logs POD

You can also enter the pod’s shell, by running:

$ kubectl --namespace NAMESPACE exec POD -it -- /bin/sh

13.4 HTTPS certificates

Stackspin uses cert-manager to automatically fetch Let’s Encrypt certificates for all deployed services. If you experience
invalid SSL certificates, i.e. your browser warns you when visiting Zulip (https://zulip.stackspin.example.org), a useful
resource for troubleshooting is the official cert-manager Troubleshooting Issuing ACME Certificates documentation.
First, try this:

In this example we fix a failed certificate request for https://chat.stackspin.example.org. We will start by checking if
cert-manager is set up correctly.

13.4.1 Is your cluster using the live ACME server ?

$ kubectl get clusterissuers -o yaml | grep 'server:'

Should return server: https://acme-v02.api.letsencrypt.org/directory and not something with the word staging in it.

13.4. HTTPS certificates 57

https://docs.cert-manager.io/en/latest/
https://letsencrypt.org/
https://zulip.stackspin.example.org
https://cert-manager.io/docs/faq/acme/

Stackspin, Release 1.0.0

13.4.2 Are all cert-manager pods in the stackspin namespace in the READY state ?

$ kubectl -n cert-manager get pods

Cert-manager uses a “custom resource” to keep track of your certificates, so you can also check the status of your
certificates by running:

This returns all the certificates for all applications on your system. The command includes example output of healthy
certificates.

$ kubectl get certificates -A
NAMESPACE NAME READY SECRET AGE
stackspin hydra-public.tls True hydra-public.tls ␣
→˓14d
stackspin single-sign-on-userpanel.tls True single-sign-on-userpanel.tls ␣
→˓14d
stackspin-apps stackspin-nextcloud-files True stackspin-nextcloud-files␣
→˓ 14d
stackspin-apps stackspin-nextcloud-office True stackspin-nextcloud-
→˓office 14d
stackspin grafana-tls True grafana-tls ␣
→˓13d
stackspin alertmanager-tls True alertmanager-tls ␣
→˓13d
stackspin prometheus-tls True prometheus-tls ␣
→˓13d

If there are problems, you can check for the specific certificaterequests:

$ kubectl get certificaterequests -A

For even more information, inspect the logs of the cert-manager pod:

$ kubectl -n stackspin logs -l "app.kubernetes.io/name=cert-manager"

You can grep for your cluster domain or for any specific subdomain to narrow down results.

13.4.3 Example

Query for failed certificates, -requests, challenges or orders:

$ kubectl get --all-namespaces certificate,certificaterequest,challenge,order | grep -iE
→˓'(false|pending)'
stackspin-apps certificate.cert-manager.io/stackspin-zulip False ␣
→˓stackspin-zulip 15h
stackspin-apps certificaterequest.cert-manager.io/stackspin-zulip-2045852889 ␣
→˓ False 15h
stackspin-apps challenge.acme.cert-manager.io/stackspin-zulip-2045852889-1775447563-
→˓837515681 pending chat.stackspin.example.org 15h
stackspin-apps order.acme.cert-manager.io/stackspin-zulip-2045852889-1775447563 ␣
→˓ pending 15h

We see that the zulip certificate resources have been in a bad state for 15 hours.

Show certificate resource status message:

58 Chapter 13. Troubleshooting

Stackspin, Release 1.0.0

$ kubectl -n stackspin-apps get certificate stackspin-zulip -o jsonpath="{.status.
→˓conditions[*]['message']}"
Waiting for CertificateRequest "stackspin-zulip-2045852889" to complete

We see that the certificate is waiting for the certificaterequest, let's query its status message:

$ kubectl -n stackspin-apps get certificaterequest stackspin-zulip-2045852889 -o␣
→˓jsonpath="{.status.conditions[*]['message']}"
Waiting on certificate issuance from order stackspin-apps/stackspin-zulip-2045852889-
→˓1775447563: "pending"

Show the related order resource and look at the status and events:

$ kubectl -n stackspin-apps describe order stackspin-zulip-2045852889-1775447563

Show the failed challenge resource reason:

$ kubectl -n stackspin-apps get challenge stackspin-zulip-2045852889-1775447563-
→˓837515681 -o jsonpath='{.status.reason}'
Waiting for http-01 challenge propagation: wrong status code '503', expected '200'

In this example, deleting the challenge fixed the issue and a proper certificate could get fetched:

$ kubectl -n stackspin-apps delete challenges.acme.cert-manager.io stackspin-zulip-
→˓2045852889-1775447563-837515681

13.4.4 Common installation failures

var substitution failed

When you execute flux get kustomization and you see this error:

$ flux get kustomization
var substitution failed for 'kube-prometheus-stack': YAMLToJSON: yaml: line 32: found␣
→˓character that cannot start any token

That can mean that one of your values contains a double quote (") or that you quoted a value in .flux.env during the
Step 1: Flux configuration. Make sure that .flux.env does not contain any values that are quoted.

If you need to change .flux.env, run the following commands:

$ kubectl apply -k $CLUSTER_DIR

Afterwards, you can speed up the process that fixes your kustomization, by running the following (replace kube-
prometheus-stack with the kustomization mentioned in the error message):

$ flux reconcile kustomization kube-prometheus-stack

13.4. HTTPS certificates 59

Stackspin, Release 1.0.0

13.5 Purge Stackspin and install from scratch

Warning:

You will lose all your data!
This completely destroys Stackspin and takes everything offline. If you choose to do this, you will need to
re-install Stackspin and make sure that your data is stored somewhere other than the VPS that runs Stackspin.

If things ever fail beyond possible recovery, here is how to completely purge a Stackspin installation to start from
scratch:

cluster$ /usr/local/bin/k3s-killall.sh
cluster$ systemctl disable k3s
cluster$ rm -rf /var/lib/{rancher,Stackspin,kubelet} /etc/rancher /var/log/{Stackspin,
→˓containers,pods} /tmp/k3s /etc/systemd/system/k3s.service
cluster$ systemctl reboot

60 Chapter 13. Troubleshooting

CHAPTER

FOURTEEN

TESTING

To get an overall status of your cluster, run the tests from the command line. There are two types of tests: testinfra tests
verify the setup, and end-to-end tests that check the webservice availability.

14.1 Testinfra tests

Testinfra tests are split into two groups, lets call them blackbox and clearbox tests. The blackbox tests run on your
provisioning machine and test the Stackspin cluster from the outside. For example, the certificate check will check if
the Stackspin returns valid certificates for the provided services. The clearbox tests run on the Stackspin host and check
i.e. if docker is installed in the right version etc. Our testinfra tests are a combination of blackbox and clearbox tests.

If you have installed the Stackspin python requirements inside a virtual environment then you need to activate it before
testing:

$. env/bin/activate

Then enter the test directory in the Git repository on your provisioning machine.

$ cd test

To run the test against your cluster, first export the CLUSTER_DIR environment variable with the location of your cluster
config directory (replace stackspin.example.org with your cluster name): Then export the KUBECONFIG variable that
lets kubectl talk to your cluster. Thirdly, export a variable that contains the password for the Prometheus HTTP
endpoint.

$ export CLUSTER_DIR="${PWD}/../clusters/stackspin.example.org"
$ export KUBECONFIG=${CLUSTER_DIR}/kube_config_cluster.yml
$ export BASIC_AUTH_PW=$(kubectl get secret -n stackspin stackspin-prometheus-basic-auth␣
→˓--template '{{ .data.pass }}' | base64 -d)

$

61

https://testinfra.readthedocs.io/

Stackspin, Release 1.0.0

14.1.1 Run all tests

$ py.test -s --ansible-inventory=${CLUSTER_DIR}/inventory.yml --hosts='ansible://*'

14.1.2 Test all applications

This will check for:

• The applications return proper certificates

• All helm releases are successfully installed

• All app pods are running and healthy (this test includes all optional applications)

These tests includes all optional applications and will fail for optional applications that are not installed.

$ pytest -s -m 'app' --connection=ansible --ansible-inventory=${CLUSTER_DIR}/inventory.
→˓yml --hosts='ansible://*'

14.1.3 Tests a specific application

$ pytest -s -m 'app' --app="wordpress" --connection=ansible --ansible-inventory=$
→˓{CLUSTER_DIR}/inventory.yml --hosts='ansible://*'

14.1.4 Advanced usage of Testinfra tests

Specify host manually:

$ py.test -s --hosts='ssh://root@example.stackspin.net'

Run only tests tagged with prometheus:

$ py.test -s --ansible-inventory=${CLUSTER_DIR}/inventory.yml --hosts='ansible://*' -m␣
→˓prometheus

Run cert test manually using the ansible inventory file:

$ py.test -s --ansible-inventory=${CLUSTER_DIR}/inventory.yml --hosts='ansible://*' -m␣
→˓certs

Run cert test manually against a different cluster, not configured in any ansible inventory file, either by using pytest:

$ FQDN='example.stackspin.net' py.test -sv -m 'certs'

or directly:

$ FQDN='example.stackspin.net' pytest/test_certs.py

Running Testinfra tests with local gitlab-runner docker executor

Export the following environment variables like this:

62 Chapter 14. Testing

Stackspin, Release 1.0.0

$ export CI_REGISTRY_IMAGE='open.greenhost.net:4567/stackspin/stackspin'
$ export SSH_PRIVATE_KEY="$(cat ~/.ssh/id_ed25519_stackspin_ci)"
$ export COSMOS_API_TOKEN='...'

then:

$ gitlab-runner exec docker --env CI_REGISTRY_IMAGE="$CI_REGISTRY_IMAGE" --env SSH_
→˓PRIVATE_KEY="$SSH_PRIVATE_KEY" --env COSMOS_API_TOKEN="$COSMOS_API_TOKEN" bootstrap

14.1.5 Known Issues

The default ssh backend for testinfra tests is paramiko, which does not work out of the box. It fails to connect to the
host because the ed25519 hostkey is not verified. Therefore we need to force plain ssh:// with either connection=ssh
or --hosts=ssh://...

14.2 End to end tests

Warning: We are migrating our end to end tests from Taiko to Cypress. You can track the progress in this issue.
You need to check below which applications can be tested with which framework. We are sorry for the current
inconvenience, we hope we’ll soon finish the migration.

End to end tests run in a browser to test if all the web services are up and running and functioning correctly.

14.2.1 Taiko tests

Used for testing these applications:

• Dashboard

• Wekan

• Wordpress

• Zulip

Install Taiko on your provisioning machine:

$ npm install -g taiko

Run Taiko tests

Taiko tests are integrated in the stackspin CLI command suite. To run all Taiko tests, run the following command in
this repository:

$ python -m stackspin CLUSTERNAME test

To learn more about the test subcommand, run:

$ python -m stackspin CLUSTERNAME test --help

14.2. End to end tests 63

https://en.wikipedia.org/wiki/Single_sign-on
https://go.cypress.io
https://open.greenhost.net/stackspin/stackspin/-/issues/1345
https://en.wikipedia.org/wiki/Single_sign-on

Stackspin, Release 1.0.0

You can also only run a Taiko test for a specific application, i.e.:

$ python -m stackspin CLUSTERNAME test --taiko-tags nextcloud

Advanced Taiko tests

If you want to use Taiko without invoking the stackspin CLI, go to the test/taiko directory and run:

For nextcloud & onlyoffice tests:

$ export DOMAIN='stackspin.example.net'
$ export SSO_USERNAME='user1'
$ export SSO_USER_PW='...'
$ export TAIKO_TESTS='nextcloud'
$ taiko --observe taiko-tests.js

You can replace nextcloud with grafana or wordpress to test the other applications, or with all to test all applications.

14.2.2 Cypress tests

Cypress tests are not yet integrated in the stackspin CLI command suite. Used for testing these applications:

• Grafana

• Nextcloud

To install Cypress on your provisioning machine go to the test/ directory and run:

$ npm install -g cypress

Test Grafana

$ export CYPRESS_BASE_URL='https://grafana.stackspin.example.net'
$ export CYPRESS_USE_SSO_LOGIN="true"
$ export CYPRESS_SSO_USER='admin'
$ export CYPRESS_SSO_PW='...'
$ cypress run --headed

Test nextcloud

The cypress end to end test is not included in the main Stackspin repository, but in the Nextcloud helm chart repository.

$ git clone https://open.greenhost.net/stackspin/nextcloud.git
$ export CYPRESS_BASE_URL='https://files.stackspin.example.net'
$ export CYPRESS_USE_SSO_LOGIN="true"
$ export CYPRESS_SSO_USER='admin'
$ export CYPRESS_SSO_PW='...'
$ cypress run --headed

64 Chapter 14. Testing

https://go.cypress.io
https://open.greenhost.net/stackspin/nextcloud

CHAPTER

FIFTEEN

SECURITY

15.1 Access control

By default, the applications on your Stackspin cluster will be exposed to the whole internet (although they are password
protected).

If you like to limit who can access your cluster resources you can configure the Stackspin ingress (ingress-nginx) to
only accept connections from a certain IP address or range.

Follow the Customize Stackspin applications instructions, but use the following secret as install/overrides/
stackspin-nginx-override.yml and apply the secret in the stackspin namespace instead of stackspin-apps.
Replace the source range with the IP address ranges you want to allow.

apiVersion: v1
kind: secret
metadata:
name: stackspin-nginx-override

data:
values.yaml: |
controller:
config:
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/

→˓annotations/#whitelist-source-range
comma separated list of CIDRs, e.g. 10.0.0.0/24,172.10.0.1.
whitelist-source-range: 1.2.3.4/24

65

https://kubernetes.github.io/ingress-nginx

Stackspin, Release 1.0.0

66 Chapter 15. Security

CHAPTER

SIXTEEN

CONTRIBUTING

16.1 Code of conduct

We follow the Contributor Covenant code of conduct, please see the CODE_OF_CONDUCT.md document for details.

16.2 Preparing the development environment

Make sure you have development dependencies installed in your development environment.

$ pip install -r requirements-dev.txt

16.2.1 pre-commit hooks

We use pre-commit to test our changes before commiting. We configured these tests:

• Basic linting and style checks shipped with pre-commit

• Conventional commit messages (optional)

• Check for private keys or secrets using gitleaks

• . . . and more, see the .pre-commit-config.yaml file in the root of the Stackspin repo

Please install these required tools on your system:

• shellcheck and

• shfmt to lint and validate shell scripts

Then install the pre-commit hooks:

$ pre-commit install

Optional:

If you want to lint your commit msgs according to Conventional Commits uncomment the conventional commits section
in .pre-commit-config.yaml and install the commit-msg hook with:

$ pre-commit install --hook-type commit-msg

67

https://www.contributor-covenant.org
https://open.greenhost.net/stackspin/stackspin/-/blob/main/CODE_OF_CONDUCT.md
https://github.com/pre-commit/pre-commit
https://pre-commit.com
https://www.conventionalcommits.org/en/v1.0.0
https://github.com/zricethezav/gitleaks
https://www.shellcheck.net
https://github.com/mvdan/sh
https://www.conventionalcommits.org

Stackspin, Release 1.0.0

Running git commit for the first time after installing the hook usually takes a little longer because pre-commit pulls
its hooks from upstream repositories. You can find all hooks in .pre-commit-config.yaml.

In case you need to skip the execution of the pre-commit hooks (please don’t!), use git commit --no-verify.

16.3 Adding dependencies

Make sure you update our requirements.txt file before you push your changes. Whenever you need a new python
package, add it to requirements.in and run

$ pip-compile

to generate an new requirements.txt which does not only pin the new package but also its dependencies.

If the new package you are adding is only used by developers, please add it to the requirements-dev.txt file.

16.4 CI pipeline image

We use a custom disk image for the VPSs used by the CI pipeline. On this image, the install-kubernetes.yaml
playbook has already been applied, which usually saves a few minutes of pipeline running time.

16.4.1 What to do when I change a part of the install-kubernetes.yaml playbook?

Don’t worry, the playbook runs in the CI (just faster, because usually nothing needs to change). So if you make changes,
you can test those in the CI without problems.

If you want to start with a clean slate, however, you might want to change .gitlab/ci_scripts/create_vps.sh
and temporarily remove the --disk-image-id argument.

Before you merge, make sure your changes are applied to a new custom image

If you changed the install-kubernetes.yaml playbook, for example to upgrade the k3s version in use, you’ll want
to generate a new disk image template and use it. This is a manual process for now. Follow these steps:

1. Create a new VPS

$ export HOST_NAME=baseimage$(date +'%Y%m%d')
Make sure you use your private ssh key id, 411 is the ssh key used in CI
$ export SSH_ID=411
$ python -m stackspin ${HOST_NAME} create --create-droplet --create-hostname ${HOST_
→˓NAME}.stackspin.net --ssh-key-id $SSH_ID --create-domain-records --subdomain $
→˓{HOST_NAME} stackspin.net

2. Accept ssh host key

$ ssh root@${HOST_NAME}.stackspin.net

3. Run the following to install only kubernetes on the VPS:

$ python3 -m stackspin ${HOST_NAME} install

4. Log into your machine and clean up the k3s server, then delete the cluster data:

68 Chapter 16. Contributing

Stackspin, Release 1.0.0

$ ssh root@${HOST_NAME}.stackspin.net
Clean up running containers and firewall
$ /usr/local/bin/k3s-killall.sh
Remove k3s state
$ rm -rf /var/lib/rancher/k3s

5. Log into Cosmos with the Stackspin account

6. Go to VPS Cloud -> VPS and shut down your VPS

7. Go to VPS Cloud -> Disk Images and click Manage for your VPSs disk image

1. Change the Disk Label to something like k3s-template-DATE

2. Set VPS to -- not assigned --

3. Click save

4. Manage the same image again

5. Click ‘make template’

6. Choose “Linux Latest LTS” as the kernel

7. Choose OS type Debian 11 (bullseye)

8. Remember the disk image ID that you can see in the current URL as id=...

9. Click save

8. Change the --disk-image-id argument in .gitlab/ci_scripts/create_vps.sh to your current disk im-
age id with a minus in front of it. This is because custom images are negative integers, whereas Greenhost’s
disk images are positive integers. Don’t forget to change the comment above to include the current commit sha
and date.

9. Remove the droplet

You are now ready to merge the changes you made to the install-kubernetes playbook

16.4. CI pipeline image 69

Stackspin, Release 1.0.0

70 Chapter 16. Contributing

CHAPTER

SEVENTEEN

STACKSPIN DESIGN

This article covers the basic design of Stackspin.

17.1 Application build pipeline

The following diagram explains the process to go from an application’s source code to a deployment on Stackspin.

71

Stackspin, Release 1.0.0

These are the steps in more detail:

• Build container (this process should be maintained by application developer by providing a Dockerfile with the
application)

1. Get application package (source code, installation package, etc.)

1. If not part of the package: get default configuration for the application

2. Build container with application package installed

1. Install application dependencies

2. Install application package

3. Setup default configuration

4. Setup pluggable configuration override, can be:

– Reading environment variables

72 Chapter 17. Stackspin Design

Stackspin, Release 1.0.0

– Extra configuration file mounted into the container elsewhere

• Helm chart

– Deployment configuration to specify:

∗ The container(s) that should be deployed.

∗ The port(s) that they expose.

∗ Volume mounts for configuration files and secrets.

∗ Live/readyness probes

∗ Persistent storage locations and methods

∗ A lot of other things

– Service configuration to specify:

∗ Ports exposed to the user of the application

– Ingress configuration to specify:

∗ How to proxy to the application (which hostname or URL)

∗ Some authentication plugins (http auth, for example)

– Custom files:

∗ Add file templates for mountable application configuration files

∗ Files that specify integrations with other services

• Deploy

1. Create values.yaml file with the variables for the Helm deployment to the Kubernetes cluster

2. “Manually” add secrets to the Kubernetes cluster.

3. Run helm install to install the customised application.

17.2 Configuration

As can be seen in the images, applications are expected to have two different types of configuration. Containers should
provide a default configuration, that at least configures things like the port the application runs on, the locations for log
files, etc.

What we call the external configuration is provided by the user. This includes overrides of the default application, as
well as variables like the hostname that the application will run on and listen to and the title of the web interface.

Stackspin will use Helm charts to provide the external configuration for the “Deploy” step. Helm charts can contain
configuration file templates with default values that can be overridden during the installation or upgrade of a helm
chart.

17.2. Configuration 73

Stackspin, Release 1.0.0

17.3 Application containers

For inclusion in Stackspin, it is required that the application developers provide Docker containers for their applications.
There are several reasons for this:

• If application developers do not provide a container, chances are they also do not think about how their applica-
tion would update itself after a new container is deployed. This can lead to problems with things like database
migrations.

• Maintaining the containerisation for an application can, in most cases, not be fully automated.

17.3.1 Container updates

When an application update is available, these updates need to be rolled out to Stackspin instances. This will be done
according the following steps:

1. Application container is built with new application source and tagged for testing.

2. Helm chart for application is updated to provide new container.

3. Helm chart is deployed to an Stackspin test cluster following the steps in the diagram above.

4. Application is tested with automated tests

5. If tests succeed, new container is tagged for release.

6. Stackspin automated update job fetches new Helm chart and upgrades current instance using Helm.

Most of these steps can be developed by configuring a CI system and configuring Kubernetes and Helm correctly. The
automated update job that will run on Stackspin clusters will be developed by us.

17.4 Persistent data

Containerised applications are normally “stateless” (meaning no data is saved inside the containers). However, it is
possible to mount persistent volumes to specific directories in the container, basically adding a persistent layer on top
of the containerised application. To provide this in Stackspin’s simple setup, we use a local storage provisioner that
automatically provides persistent data on the VPS running Stackspin to an application that requests it.

17.5 Automatic updates

Stackspin has an auto-update mechanism that performs unattended upgrades to applications. Flux 2 is the system
running in the cluster that is responsible for these updates.

Flux 2 tracks all the files in the flux2 directory of the Stackspin code repository. Once changes are pushed to the
branch that Flux tracks, the changes are applied to the cluster.

We use Flux 2 in “read only” mode, which means that your Stackspin cluster does not push changes to our Git repository.
You can read more about Flux 2 and its components in the flux 2 documentation.

74 Chapter 17. Stackspin Design

https://open.greenhost.net/stackspin/local-path-provisioner
https://fluxcd.io/
https://open.greenhost.net/stackspin/stackspin
https://fluxcd.io/docs

Stackspin, Release 1.0.0

17.6 APIs

Stackspin includes several APIs that are available for some pieces of the software to talk to. Specifically the Dashboard
application uses most of these APIs.

• Ory Kratos is the user management API that we use. It comes with several handy features, like sending password
reset emails and (soon) MFA.

• Ory Hydra provides us with an OpenID Connect workflow.

• Velero is a backup mechanism that integrates well with Kubernetes: it includes “Custom Resource Definitions”
for backups and backup locations. As such, we can access it through the Kubernetes API.

• Flux 2 is used to configure and auto-update applications. App configuration happens mostly through Kubernetes
ConfigMaps and Secrets and are applied through the Flux CRDs Kustomization and HelmRelease.

17.6. APIs 75

https://open.greenhost.net/stackspin/admin-frontend
https://open.greenhost.net/stackspin/admin-frontend
https://www.ory.sh/kratos/docs/quickstart/
https://www.ory.sh/hydra/docs/
https://velero.io/docs/v1.7/
https://fluxcd.io/docs/
https://fluxcd.io/docs/components/kustomize/kustomization/
https://fluxcd.io/docs/components/helm/helmreleases/

Stackspin, Release 1.0.0

76 Chapter 17. Stackspin Design

CHAPTER

EIGHTEEN

REFERENCE DOCUMENTATION

18.1 File structure

During the installation process, the following files and directories are created:

• /var/lib/Stackspin/local-storage: all application data (e.g., Nextcloud files) are stored here.

• /var/lib/rancher/k3s: this contains the files related to your “Kubernetes” cluster.

– The kubectl configuration file is located at /etc/rancher/k3s/k3s.yaml

77

Stackspin, Release 1.0.0

78 Chapter 18. Reference documentation

CHAPTER

NINETEEN

COMPARABLE PROJECTS

Other open source projects similar to Stackspin exist. Each of the platforms listed here, like Stackspin, provide a suite
of open source cloud applications. Most of the platforms, like Stackspin, include their own user management dashboard
and single sign-on (SSO) features.

19.1 What makes Stackspin unique

However there are changes in implementation that make Stackspin different from these alternatives. As far as we found,
none of the projects listed below will automatically update your applications without you having to push a button. Also,
all mentioned platforms require application modifications, for example to make use of the authentication system.

Stackspin avoids changing the included applications to prevent maintenance overhead and enable seamless native up-
dates. It only requires OpenID Connect support, so the application can be integrated with single sign-on.

So far, Stackspin requires one intervention before an update can be pushed to users: It needs to be tested. We want to
make sure that an application works well with the platform and other applications before we let you use it. We work
towards a fully automated test suite to minimize failure while providing automatic updates.

19.2 Platforms

19.2.1 Fully Open

Sandstorm allows applications to be installed as so-called Grains. Each grain is a copy of the complete application
made for a specific purpose. For example, a grain for document editor “Etherpad” contains not only the data written
in the notepad, but also the Etherpad and database software. If you have two notepads, you also have two copies of the
software. With many users, this approach runs into limits.

YunoHost is mostly based on Debian and its package management and user management system. As a result, Yunohost
is relatively lightweight. However, if an application on your Yunohost contains a security hole, the data of other
applications is likely compromised as well. This is less likely in Stackspin as applications run in sealed-off containers.

SelfPrivacy automatically sets up an open stack focused on personal use from your phone on an established cloud
provider. From the documentation it seems to not add any integration (such as SSO) between the services and the only
dashboard is the app itself.

Mail-in-a-Box is a narrowly focused project that tightly integrates Nextcloud and various applications to create a full-
featured mailserver with a control panel. As such there is no SSO and no configuration options.

79

https://sandstorm.io
https://yunohost.org
https://selfprivacy.org/en
https://mailinabox.email

Stackspin, Release 1.0.0

19.2.2 Open Core

Cloudron offers a similar application suite. In contrast to Stackspin, Cloudron requires a paid account if you want to
use more than two applications or more than five users.

Univention Corporate Server is focused on business and does not make reproducible builds easily available or facil-
itate community contribution.

80 Chapter 19. Comparable projects

https://cloudron.io
https://cloudron.io/pricing.html
https://www.univention.com/products/ucs

CHAPTER

TWENTY

SINGLE SIGN-ON ARCHITECTURE

The single sign-on system consists of a few components:

1. The OAuth 2 and OpenID Connect (OIDC) provider, Hydra

2. The Identity provider, Kratos

3. The Login application which serves as a login panel, consent application and a settings screen for the Kratos
settings. The login application code is part of the Dashboard Backend repository

20.1 Overview

The single sign-on system is a combination of applications that serve as a central user database and authenticates them
to other applications. Users are stored inside Kratos’s database. Kratos also serves an API that helps us generate
interfaces for many user-related tasks, such as:

1. Setting your name and username

2. The whole password reset flow

3. The login form

4. 2FA (not implemented in the login application yet)

The Login application is mostly a front-end that uses the Kratos API to generate interfaces for logging in, resetting the
password and setting some user data.

20.2 Flows

20.2.1 Logging in

The Kratos login flow is documented in the Kratos documentation. Our implementation is slightly different from what
you see there:

81

https://www.ory.sh/hydra/docs/
https://www.ory.sh/kratos/docs/
https://open.greenhost.net/stackspin/dashboard-backend/-/tree/main/web
https://www.ory.sh/kratos/docs/self-service/flows/user-login#login-for-client-side-ajax-browser-clients

Stackspin, Release 1.0.0

20.2.2 User creation

We have not implemented Kratos’s Registration flow, because users cannot self-register with a Stackspin cluster. An
administrator can make new users using the Dashboard application. When a user is created, an email address always
needs to be provided.

Once a user has been created, they can start the Account Recovery and Password Reset flow in order to set or reset their
password. We use the “Recovery link Method” described in the Kratos documentation.

20.2.3 User settings

Although users can change their settings through the Dashboard application, the login application also implements the
user-settings Kratos flow. Users that receive a password recovery link use this flow to reset their passwords. It also
allows them to change their username and full name.

20.2.4 Authentication

The following is an adaptation of the sequence diagram provided in the Hydra documentation

20.3 Configuring OIDC clients

If you have installed the SSO system using the Helm chart, following this documentation, these are the settings that
you usually need to for setting up new OIDC clients:

• OAuth 2 server URL: https://sso.stackspin.example.org

• OAuth 2 Auth Endpoint: https://sso.stackspin.example.org/oauth2/auth

• OAuth 2 Userinfo endpoint: https://sso.stackspin.example.org/userinfo

• OAuth 2 Token endpoint: https://sso.stackspin.example.org/oauth2/token

In addition you’ll need to add the client to Hydra. This happens with Hydra Maester, a helper application that reads
oauth2clients.hydra.ory.sh Kubernetes objects and synchronises them with Hydra.

An example oauth2client:

apiVersion: hydra.ory.sh/v1alpha1
kind: OAuth2Client
metadata:
name: dashboard-oauth-client

spec:
grantTypes:
- authorization_code
- refresh_token
- client_credentials
- implicit

hydraAdmin: {}
metadata: null
redirectUris:
- https://dashboard.stackspin.example.org/login-callback
responseTypes:
- id_token

(continues on next page)

82 Chapter 20. Single sign-on Architecture

https://www.ory.sh/kratos/docs/self-service/flows/account-recovery
https://open.greenhost.net/stackspin/dashboard
https://www.ory.sh/kratos/docs/next/self-service/flows/user-settings/
https://www.ory.sh/docs/hydra/concepts/login
https://www.ory.sh/hydra/docs/guides/kubernetes-helm-chart/#hydra-maester

Stackspin, Release 1.0.0

(continued from previous page)

- code
scope: openid profile email stackspin_roles
secretName: stackspin-dashboard-oauth-variables
tokenEndpointAuthMethod: client_secret_post

20.3. Configuring OIDC clients 83

	Installation overview
	Preparing the provisioning machine
	Create a python virtual environment (Optional)
	Install the requirements
	Stackspin CLI client usage

	Create and configure a kubernetes cluster
	Install Stackspin
	Step 1: Flux configuration
	Configuration
	Cluster information
	Outgoing email
	Backups with Velero (Optional)

	Step 2: Install core applications
	Step 3: Install additional applications
	Step 4: Validate setup
	Step 5: Let us know!

	Test your installation
	Stackspin installation
	Command line tests
	Testing Instructions for all apps
	Testing Instructions for specific apps
	Nextcloud
	Files & synchronization
	Calendar
	Passwords
	Nextcloud sync applications

	Onlyoffice
	Creating a new office document
	Collaborating on an office document

	Wordpress

	Providing feedback

	Manage Stackspin
	Logging in
	Login and logout limitations
	Limitations on login
	Limitations on logout
	Limitations on user management

	Dashboard
	Users

	Applications
	Dashboard
	Grafana
	Nextcloud
	Files & synchronization
	Calendar
	Passwords

	Onlyoffice
	Zulip
	Roles management
	Single sign-off

	Wekan
	Single sign-off

	WordPress
	Roles management

	Migrating application data
	Nextcloud
	Wekan
	WordPress
	Customize the WordPress installation
	Import the database
	Import the files from wp-content/uploads

	Zulip

	Logging
	Central log aggregation
	Viewing logs in Grafana
	Query logs with logcli
	LogQL query examples
	Flux
	Cert-manager
	Hydra
	Etc

	Monitoring
	Grafana
	Dashboards
	Browse aggregated logs in Grafana

	Prometheus
	Alertmanager
	Email alerts

	Maintenance
	Backup
	On your provisioning machine
	On your cluster

	Restore
	Select backup
	Restore app data

	Change the IP of your cluster
	Delete evicted pods
	Apply changes to flux variables
	Run Nextcloud occ commands

	Upgrade guide
	From 0.8 to 1.0
	Upgrading to 0.8
	Nextcloud
	Rocket.Chat
	Monitoring
	Wekan
	WordPress

	Upgrading to 0.7.0
	Potential upgrade issues
	SSO helm upgrade failed
	Loki upgrade retries exhausted

	Upgrading to 0.6.0
	Upgrading from 0.4.0 to 0.5.0
	Upgrading from 0.3.0 to 0.4.0
	Upgrading to 0.3.0

	Customizing
	Prerequisites
	Customize Stackspin applications
	Example: Customize Nextcloud to work with staging certificates

	Custom flux repository
	Adding custom apps to the cluster

	Troubleshooting
	Known issues
	SSH access
	Using kubectl to debug your cluster
	Application installation or upgrade failures
	Viewing upgrade history

	Debugging on a lower level

	HTTPS certificates
	Is your cluster using the live ACME server ?
	Are all cert-manager pods in the stackspin namespace in the READY state ?
	Example
	Common installation failures
	var substitution failed

	Purge Stackspin and install from scratch

	Testing
	Testinfra tests
	Run all tests
	Test all applications
	Tests a specific application
	Advanced usage of Testinfra tests
	Known Issues

	End to end tests
	Taiko tests
	Run Taiko tests
	Advanced Taiko tests

	Cypress tests
	Test Grafana
	Test nextcloud

	Security
	Access control

	Contributing
	Code of conduct
	Preparing the development environment
	pre-commit hooks

	Adding dependencies
	CI pipeline image
	What to do when I change a part of the install-kubernetes.yaml playbook?
	Before you merge, make sure your changes are applied to a new custom image

	Stackspin Design
	Application build pipeline
	Configuration
	Application containers
	Container updates

	Persistent data
	Automatic updates
	APIs

	Reference documentation
	File structure

	Comparable projects
	What makes Stackspin unique
	Platforms
	Fully Open
	Open Core

	Single sign-on Architecture
	Overview
	Flows
	Logging in
	User creation
	User settings
	Authentication

	Configuring OIDC clients

